Computing the permanent modulo a prime power

Andreas Björklund ${ }^{\text {a }}$, Thore Husfeldt ${ }^{\text {a,b,*, }}$ Isak Lyckberg ${ }^{\text {a }}$
a Lund University, Box 118, 22100 Lund, Sweden
${ }^{\text {b }}$ ITU Copenhagen, Rued Langgaards Vej 7, 2300 København S, Denmark

A R T I C L E I N F O

Article history:

Received 16 May 2016
Received in revised form 17 April 2017
Accepted 28 April 2017
Available online 4 May 2017
Communicated by Ł. Kowalik

Keywords:

Algorithms
Graph algorithms
Randomized algorithms

Abstract

We show how to compute the permanent of an $n \times n$ integer matrix modulo p^{k} in time $n^{k+O(1)}$ if $p=2$ and in time $2^{n} / \exp \left\{\Omega\left(\gamma^{2} n / p \log p\right)\right\}$ if p is an odd prime with $k p<n$, where $\gamma=1-k p / n$. Our algorithms are based on Ryser's formula, a randomized algorithm of Bax and Franklin, and exponential-space tabulation. Using the Chinese remainder theorem, we conclude that for each $\delta>0$ we can compute the permanent of an $n \times n$ integer matrix in time $2^{n} / \exp \left\{\Omega\left(\delta^{2} n / \beta^{1 /(1-\delta)} \log \beta\right)\right\}$, provided there exists a real number β such that \mid per $A \mid \leq \beta^{n}$ and $\beta \leq\left(\frac{1}{44} \delta n\right)^{1-\delta}$.

(C) 2017 Published by Elsevier B.V.

1. Introduction

The permanent of an $n \times n$-matrix $A=\left(a_{i j}\right)$ is defined as
$\operatorname{per} A=\sum_{\sigma} \prod_{i=1}^{n} a_{i, \sigma(i)}$
where the sum is over all permutations σ of the elements $1, \ldots, n$. From the definition, per A can be computed in $O(n!n)$ arithmetic operations. Using Ryser's classic formula [9], per A can be computed in $O\left(2^{n} n\right)$ arithmetic operations. More recently it was shown that when the entries of A are $n^{O(1)}$-bit integers, then per A can be computed in time $2^{n} / \exp \{\Omega(\sqrt{n / \log n})\}$ [4].

These exponential running times seem particularly disappointing when compared to the polynomial-time algorithms for computing the determinant. This discrepancy was famously explained by Valiant's seminal result [12],

[^0]which showed that the permanent is hard for the complexity class \#P.

We present here some improved algorithms for computing per A modulo a prime power.

2. Results

Theorem 1. Given an $n \times n$ integer matrix A and a positive integer k, the value per $A \bmod 2^{k}$ can be computed in time $n^{k+O(1)}$ and $n^{0(1)}$ space.

This result is established by Algorithm A in Section 4. This improves Valiant's algorithm [12] for per $A \bmod 2^{k}$, which runs in time $O\left(n^{4 k-3}\right)$. It is crucial here that computation is performed modulo a power of 2: There is little hope of finding, say, an algorithm for per $A \bmod 3^{k}$ in time $n^{0(k)}$, since already the computation of per $A \bmod 3$ requires time $\exp (\Omega(n))$ under the randomized exponential time hypothesis [6].

Instead, for larger primes $p>2$, we present an algorithm for per $A \bmod p^{k}$ with running time $O\left(\left(2-\epsilon_{p}\right)^{n}\right)$, where ϵ_{p} is positive and depends on p :

Theorem 2. Given an $n \times n$ integer matrix A, a positive integer k, and a prime p such that $k p<n$, the value per $A \bmod p^{k}$ can be computed in time within a polynomial factor of
$2^{n} / \exp \left\{\Omega\left(\gamma^{2} n / p \log p\right)\right\}$,
where $\gamma=1-k p / n$.
In a setting where the product $k p$ can be bounded away from n, say $k p \leq \frac{99}{100} n$ for n sufficiently large, the term γ^{2} can be absorbed in the Ω notation for a cleaner bound. This result is established by Algorithm B in Section 5.

Theorem 3 can be applied to permanents whose value is known to be small:

Theorem 3. Given $\delta>0$, an $n \times n$ matrix A of integers, and a real number $\beta \leq\left(\frac{1}{44} \delta n\right)^{1-\delta}$ such that \mid per $A \mid \leq \beta^{n}$, the value per A can be computed in time within a polynomial factor of
$2^{n} / \exp \left\{\Omega\left(\delta^{2} n / \beta^{1 /(1-\delta)} \log \beta\right)\right\}$.
In particular, if β is a constant, the bound can be given as $O\left(\left(2-\epsilon_{\beta}\right)^{n}\right)$. This result is established by Algorithm C in Section 6 .

An interesting special case is when the entries of A are restricted to $\{0,1\}$. Then the permanent equals the number of perfect matchings in the bipartite graph whose biadjacency matrix is A. For instance, assume that such a graph contains $\exp \{O(n)\}$ perfect matchings. Apply Theorem 3 with β constant. The resulting running time is $2^{n} / \exp \{\Omega(n)\}$.

We note that Theorem 3 can be applied even if no bound β is known, given that the input matrix contains only nonnegative integers. For such matrices, a celebrated randomized algorithm by Jerrum, Sinclair, and Vigoda [7] computes for given $\epsilon>0$ in time polynomial in n and $1 / \epsilon$ a value b such that $\operatorname{Pr}((1-\epsilon)$ per $A \leq b \leq$ $(1+\epsilon) \operatorname{per} A) \geq \frac{1}{2}$. We can then take $\beta=b^{1 / n}$, which is only a factor $(1+\epsilon)^{1 / n}$ off the best possible bound. Provided that per $A \leq n^{n}$, the size restriction on β applies for all $\delta>0$ and n sufficiently large, so we can apply Theorem 3.

An algorithm by Cygan and Pilipczuk [5] computes the permanent in time
$2^{n} / \exp \{\Omega(n / d)\}$,
where d is the average number of nonzero entries per row. Their algorithm requires no bound on the size of the permanent. We can compare Theorem 3 to the result of [5] by looking at matrices over $\{-1,0,1\}$ with at most d nonzero entries per row. For such matrices, we have $|\operatorname{per} A| \leq$ $\prod_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right| \leq d^{n}$, so that Theorem 3 applies with $\beta=d$ for the weaker bound $2^{n} / \exp \left\{\Omega\left(n / d^{1 /(1-\delta)} \log d\right)\right\}$. On the other hand, Theorem 3 outperforms [5] on families of matrices with many nonzero entries but small permanents. For instance, consider an $n \times n$ matrix A over $\{-1,0,1\}$ constructed by taking d nonzero random entries per row and picking the sign on each 1 uniformly at random. It is known that $|\operatorname{per} A| \leq\left(\lambda_{\max }\right)^{n}$, where $\lambda_{\max }$ is the spectral
norm of the matrix $A[1$, Sec. 2]. By the Bai-Yin theorem [2, Thm. 2], the spectral norm of a random matrix whose elements have mean 0 and variance σ^{2} is concentrated around $2 \sigma \sqrt{n}$. Since the variance of the elements in A is $\sigma^{2}=d / n$, the absolute value of the permanent of A is almost surely less than $\left(\frac{201}{100} \sqrt{d}\right)^{n}$. Now Theorem 3 with $\beta=\frac{201}{100} \sqrt{d}$ gives $2^{n} / \exp \left\{\Omega\left(n / d^{1 /(2-\delta)} \log d\right)\right\}$ for any $\delta>0$.

3. Preliminaries

Our starting point is Ryser's formula [9] for the permanent. It is based on the principle of inclusion-exclusion and can be given as follows:
per $A=(-1)^{n} \sum_{x \in\{0,1\}^{n}}(-1)^{x_{1}+\cdots+x_{n}} \prod_{i=1}^{n}(A x)_{i}$.
We now review an idea of Bax and Franklin [3].
Lemma 4. Let A be an $n \times n$ integer matrix. Then for every vector $r \in \mathbf{Z}^{n}$,
$\operatorname{per} A=(-1)^{n+1} \sum_{x \in\{0,1\}^{n}}(-1)^{x_{1}+\cdots+x_{n}} \prod_{i=1}^{n}(A x+r)_{i}$.
Proof. Define the matrix $A^{\prime} \in \mathbf{Z}^{n+1 \times n+1}$ as
$A^{\prime}=\left(\begin{array}{cccc}a_{11} & \ldots & a_{1 n} & r_{1} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n 1} & \ldots & a_{n n} & r_{n} \\ 0 & \ldots & 0 & 1\end{array}\right)$.
First, we observe per $A=$ per A^{\prime}, because in the Laplace expansion of the permanent of A^{\prime} along the last row, all terms vanish except $a_{n+1, n+1}^{\prime}$ per $A=1 \cdot \operatorname{per} A$.

Now consider evaluating per A^{\prime} with Ryser's formula (2). The factor
$\left(A^{\prime} x\right)_{n+1}=0 \cdot x_{1}+\cdots+0 \cdot x_{n}+1 \cdot x_{n+1}=x_{n+1}$
vanishes unless $x_{n+1}=1$. Thus, we can restrict our attention to vectors of the form $x^{\prime}=\left(x_{1}, \ldots, x_{n}, 1\right)$. For such a vector, we have $A^{\prime} x^{\prime}=A\left(x_{1}, \ldots, x_{n}\right)+r$. Ryser's formula now gives
$\operatorname{per} A^{\prime}=(-1)^{n+1} \sum_{x \in\{0,1\}^{n}}(-1)^{x_{1}+\cdots+x_{n}} \prod_{i=1}^{n}(A x+r)_{i}$.
We turn to modular computation. Fix a positive integer k and let p be a prime. Let $\operatorname{GF}(p)$ denote the finite field of order p. Let X be the set of vectors $x \in\{0,1\}^{n}$ such that the vector $A x+r$ has fewer than k zeros in $\operatorname{GF}(p)$. The crucial observation is that we can restrict our attention to X :

Lemma 5. Let A be an $n \times n$ integer matrix. Then,
$\operatorname{per} A=(-1)^{n+1} \sum_{x \in X}(-1)^{x_{1}+\cdots+x_{n}} \prod_{i=1}^{n}(A x+r)_{i} \quad\left(\bmod p^{k}\right)$.

https://daneshyari.com/en/article/4950836

Download Persian Version:

https://daneshyari.com/article/4950836

Daneshyari.com

[^0]: * Corresponding author at: Lund University, Box 118, 22100 Lund, Sweden.

 E-mail address: thore.husfeldt@cs.lth.se (T. Husfeldt).

