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We show how to compute the permanent of an n × n integer matrix modulo pk in time 
nk+O (1) if p = 2 and in time 2n/ exp{�(γ 2n/p log p)} if p is an odd prime with kp < n, 
where γ = 1 − kp/n. Our algorithms are based on Ryser’s formula, a randomized algorithm 
of Bax and Franklin, and exponential-space tabulation.
Using the Chinese remainder theorem, we conclude that for each δ > 0 we can compute 
the permanent of an n × n integer matrix in time 2n/ exp{�(δ2n/β1/(1−δ) logβ)}, provided 
there exists a real number β such that |per A| ≤ βn and β ≤ ( 1

44 δn)1−δ .
© 2017 Published by Elsevier B.V.

1. Introduction

The permanent of an n × n-matrix A = (aij) is defined 
as

per A =
∑
σ

n∏
i=1

ai,σ (i) (1)

where the sum is over all permutations σ of the ele-
ments 1, . . . ,n. From the definition, per A can be computed 
in O (n!n) arithmetic operations. Using Ryser’s classic for-
mula [9], per A can be computed in O (2nn) arithmetic op-
erations. More recently it was shown that when the entries 
of A are nO (1)-bit integers, then per A can be computed in 
time 2n/ exp{�(

√
n/ log n)} [4].

These exponential running times seem particularly dis-
appointing when compared to the polynomial-time algo-
rithms for computing the determinant. This discrepancy 
was famously explained by Valiant’s seminal result [12], 
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which showed that the permanent is hard for the com-
plexity class #P.

We present here some improved algorithms for com-
puting per A modulo a prime power.

2. Results

Theorem 1. Given an n ×n integer matrix A and a positive inte-
ger k, the value per A mod 2k can be computed in time nk+O (1)

and nO (1) space.

This result is established by Algorithm A in Section 4. 
This improves Valiant’s algorithm [12] for per A mod 2k , 
which runs in time O (n4k−3). It is crucial here that com-
putation is performed modulo a power of 2: There is little 
hope of finding, say, an algorithm for per A mod 3k in time 
nO (k) , since already the computation of per A mod 3 re-
quires time exp(�(n)) under the randomized exponential 
time hypothesis [6].

Instead, for larger primes p > 2, we present an algo-
rithm for per A mod pk with running time O

(
(2 − εp)n

)
, 

where εp is positive and depends on p:
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Theorem 2. Given an n × n integer matrix A, a positive inte-
ger k, and a prime p such that kp < n, the value per A mod pk

can be computed in time within a polynomial factor of

2n
/

exp
{
�(γ 2n/p log p)

}
,

where γ = 1 − kp/n.

In a setting where the product kp can be bounded away 
from n, say kp ≤ 99

100 n for n sufficiently large, the term γ 2

can be absorbed in the � notation for a cleaner bound. 
This result is established by Algorithm B in Section 5.

Theorem 3 can be applied to permanents whose value 
is known to be small:

Theorem 3. Given δ > 0, an n × n matrix A of integers, and a 
real number β ≤ ( 1

44 δn)1−δ such that | per A| ≤ βn, the value 
per A can be computed in time within a polynomial factor of

2n
/

exp
{
�(δ2n/β1/(1−δ) logβ)

}
.

In particular, if β is a constant, the bound can be given 
as O

(
(2 − εβ)n

)
. This result is established by Algorithm C 

in Section 6.
An interesting special case is when the entries of A are 

restricted to {0, 1}. Then the permanent equals the num-
ber of perfect matchings in the bipartite graph whose bi-
adjacency matrix is A. For instance, assume that such a 
graph contains exp{O (n)} perfect matchings. Apply The-
orem 3 with β constant. The resulting running time is 
2n/ exp{�(n)}.

We note that Theorem 3 can be applied even if no 
bound β is known, given that the input matrix con-
tains only nonnegative integers. For such matrices, a cel-
ebrated randomized algorithm by Jerrum, Sinclair, and 
Vigoda [7] computes for given ε > 0 in time polynomial 
in n and 1/ε a value b such that Pr

(
(1 − ε) per A ≤ b ≤

(1 + ε) per A
) ≥ 1

2 . We can then take β = b1/n , which is 
only a factor (1 + ε)1/n off the best possible bound. Pro-
vided that per A ≤ nn , the size restriction on β applies for 
all δ > 0 and n sufficiently large, so we can apply Theo-
rem 3.

An algorithm by Cygan and Pilipczuk [5] computes the 
permanent in time

2n/exp {�(n/d)} ,

where d is the average number of nonzero entries per row. 
Their algorithm requires no bound on the size of the per-
manent. We can compare Theorem 3 to the result of [5] by 
looking at matrices over {−1, 0, 1} with at most d nonzero 
entries per row. For such matrices, we have |per A| ≤∏n

i=1
∑n

j=1|aij | ≤ dn , so that Theorem 3 applies with β = d

for the weaker bound 2n/ exp{�(n/d1/(1−δ) log d)}. On the 
other hand, Theorem 3 outperforms [5] on families of ma-
trices with many nonzero entries but small permanents. 
For instance, consider an n × n matrix A over {−1, 0, 1}
constructed by taking d nonzero random entries per row 
and picking the sign on each 1 uniformly at random. It is 
known that |per A| ≤ (λmax)

n , where λmax is the spectral 

norm of the matrix A [1, Sec. 2]. By the Bai–Yin theo-
rem [2, Thm. 2], the spectral norm of a random matrix 
whose elements have mean 0 and variance σ 2 is concen-
trated around 2σ

√
n. Since the variance of the elements in 

A is σ 2 = d/n, the absolute value of the permanent of A
is almost surely less than ( 201

100

√
d)n . Now Theorem 3 with 

β = 201
100

√
d gives 2n/ exp{�(n/d1/(2−δ) log d)} for any δ > 0.

3. Preliminaries

Our starting point is Ryser’s formula [9] for the perma-
nent. It is based on the principle of inclusion–exclusion 
and can be given as follows:

per A = (−1)n
∑

x∈{0,1}n

(−1)x1+···+xn

n∏
i=1

(Ax)i . (2)

We now review an idea of Bax and Franklin [3].

Lemma 4. Let A be an n × n integer matrix. Then for every vec-
tor r ∈ Zn,

per A = (−1)n+1
∑

x∈{0,1}n

(−1)x1+···+xn

n∏
i=1

(Ax + r)i . (3)

Proof. Define the matrix A′ ∈ Zn+1×n+1 as

A′ =

⎛
⎜⎜⎜⎝

a11 . . . a1n r1
...

. . .
...

...

an1 . . . ann rn

0 . . . 0 1

⎞
⎟⎟⎟⎠ .

First, we observe per A = per A′ , because in the Laplace 
expansion of the permanent of A′ along the last row, all 
terms vanish except a′

n+1,n+1 per A = 1 · per A.
Now consider evaluating per A′ with Ryser’s formula 

(2). The factor

(A′x)n+1 = 0 · x1 + · · · + 0 · xn + 1 · xn+1 = xn+1

vanishes unless xn+1 = 1. Thus, we can restrict our atten-
tion to vectors of the form x′ = (x1, . . . , xn, 1). For such a 
vector, we have A′x′ = A(x1, . . . , xn) + r. Ryser’s formula 
now gives

per A′ = (−1)n+1
∑

x∈{0,1}n

(−1)x1+···+xn

n∏
i=1

(Ax + r)i . �

We turn to modular computation. Fix a positive integer 
k and let p be a prime. Let GF(p) denote the finite field 
of order p. Let X be the set of vectors x ∈ {0, 1}n such 
that the vector Ax + r has fewer than k zeros in GF(p). 
The crucial observation is that we can restrict our attention 
to X :

Lemma 5. Let A be an n × n integer matrix. Then,

per A = (−1)n+1
∑
x∈X

(−1)x1+···+xn

n∏
i=1

(Ax+r)i (mod pk).
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