ELSEVIER

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Strong Menger connectivity with conditional faults of folded hypercubes

Weihua Yang*, Shuli Zhao, Shurong Zhang

Department of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi-030024, China

ARTICLE INFO

Article history:
Received 11 April 2016
Received in revised form 15 April 2017
Accepted 5 May 2017
Available online 17 May 2017
Communicated by X. Wu

Keywords: Folded hypercubes Fault tolerance Strong Menger connectivity Conditional faults Path system

ABSTRACT

Motivated by parallel routing in networks with faults and evaluating the reliability of networks, we consider strong Menger connectivity of the folded hypercube networks. We show that in all n-dimensional folded hypercubes with a vertex set S of n-1 vertices removed, each pair of unremoved vertices x and y are connected by $\min\{d_{G-S}(x), d_{G-S}(y)\}$ vertex-disjoint paths (i.e., strong Menger property), where $d_{G-S}(x)$ and $d_{G-S}(y)$ are the remaining degree of vertices x and y in G-S, respectively. Moreover, if there are 2n-3 vertex faults, and each vertex except for the vertex faults has at least two fault-free adjacent vertices, then all folded hypercube networks still have the strong Menger property.

1. Introduction

The connectivity is one of the important parameters to evaluate the reliability and fault tolerance of a network [2, 3,14]. The traditional connectivity $\kappa(G)$ of a graph G is defined as the minimum number of vertices whose removal from G induces a disconnected graph. In contrast to the concept, Menger's Theorem [10] provided a local point of view, and define the connectivity of any two vertices as the minimum number of internally vertex-disjoint paths between them. As an interconnection network is usually modeled by a connected graph in which vertices represent processors and edges represent links between processors. The connectivity is useful to assess the reliability of the interconnection networks.

As the vertex-disjoint paths can not only increase the efficiency of message transmission, but also it can provide alternative paths when there are some vertex faults. So vertex-disjoint path systems play an important role on the

parallel routing in networks. Menger's Theorem [10] is a classic result in connectivity and states that if a graph G is k-connected, then every pair of vertices in G is connected by k vertex-disjoint paths.

With the increasing size of networks, the vertex faults have become common. Suppose that the network G has a set S of faulty vertices. Let u and v be two nonfaulty vertices in G, and we know the numbers of the non-faulty neighbours of u and v are $d_{G-S}(u), d_{G-S}(v)$, respectively. We are interested in constructing the maximum number of vertex-disjoint fault-free paths between u and v. Obviously, the vertex-disjoint paths between u and v can not exceed $min\{d_{G-S}(u), d_{G-S}(v)\}$, where $d_{G-S}(u)$ and $d_{G-S}(v)$ are the remaining degree of vertices u and v in G-S, respectively. Note that the problem has a strong similarity to that of Menger's theorem. Thus it was introduced the definition of strong Menger-connectivity by Oh and Chen [6].

We study strong Menger-connectivity of regular graphs. The k-regular graph is *strongly Menger-connected* if for any copy G-F of G with at most k-2 vertices removed, each pair u and v of G-F are connected by $\min\{d_{G-F}(u), d_{G-F}(v)\}$ vertex-disjoint paths, where

^{*} Corresponding author.

E-mail addresses: ywh222@163.com, yangweihua@tyut.edu.cn
(W. Yang).

 $d_{G-F}(u)$ and $d_{G-F}(v)$ are the remaining degree of vertices u and v, respectively. This concept is firstly applied on hypercubes and introduced by Oh and Chen [6]. And later Shih et al. showed that the hypercube-like networks are strongly Menger-connected [12]. A k-regular graph is maximally connected if it is k-connected. It is not hard to see that the strong Menger-connectivity is a generalization of the maximal connectivity. It is easy to construct a maximally connected graph that is not strongly Menger-connected.

In this paper, we study the strong Menger-connectivity of folded hypercubes. Moreover, if there are 2n-3 vertex faults, and each vertex except for the vertex faults has at least two fault-free adjacent vertices, then all folded hypercube networks still have the strong Menger property.

2. Preliminary

The hypercube is one of the most famous interconnection network models. An n-dimensional hypercube is an undirected graph $Q_n = (V, E)$ with $|V| = 2^n$ and |E| = $n2^{n-1}$. Each vertex can be represented by an *n*-bit binary string. There is an edge between two vertices whenever their binary string representation differs in only one bit position. Following Latifi et al. [8], we express Q_n as $D_0 \bigcirc D_1$, where D_0 and D_1 are two n-1 cubes of Q_n induced by the vertices with the ith coordinates 0 and 1 respectively. Sometimes we use $X_1 \cdots X_{i-1} 0 X_{i+1} \cdots X_n$ to denote a (n-1)-dimensional subcube of Q_n , where $X \in \mathbb{Z}_2$. Moreover, if n-k coordinates of the *n*-bit binary string are fixed, we can use $X_1 X_2 \cdots X_k$ to denote a k-dimensional subcube in Q_n . Clearly, the vertex ν in one (n-1)-subcube has exactly one neighbour v' in the other (n-1)-subcube. Let $u=x_1x_2\cdots x_i\cdots x_n\in V(Q_n)$, we use $\bar{u} = \bar{x_1}\bar{x_2}\cdots\bar{x_n}$ to denote a vertex that all coordinates of \bar{u} are different from u's, i.e., $\bar{x_i}$ represents the complement of x_i .

As one of the important variants of the hypercube network, the n-dimensional folded hypercube FQ_n , proposed by El-Amawy [5], is obtained from an n-dimensional hypercube Q_n by adding an edge between any pair of vertices with complementary addresses. There are some results about the folded hypercubes, one can refer to [4,15,9,11,16-18] for the detail. The folded hypercube FQ_n is superior to Q_n in some properties, see [5, 7]. Thus the folded hypercube is an enhancement on the hypercube Q_n . FQ_n is obtained by adding a perfect matching M on the hypercube, where $M = \{(u, \overline{u}) | u \in$ $V(Q_n)$. In addition, denote by M_i the edge set $\{(x_1x_2\cdots$ $x_{i-1}x_ix_{i+1}\cdots x_n, x_1x_2\cdots x_{i-1}\overline{x_i}x_{i+1}\cdots x_n)|\overline{x_i}|$ represents the complement of x_i }. One can see that $E(Q_n) = \bigcup_{i=1}^n M_i$ and $E(FQ_n) = E(Q_n) \bigcup M$. The 3-dimensional and 4-dimensional folded hypercubes are shown in the following Fig. 1 and Fig. 2, respectively.

For convenience, FQ_n can be expressed as $D_0 \otimes D_1$, where D_0 and D_1 are (n-1)-dimensional subcubes induced by the vertices with the ith coordinate 0 and 1 respectively. Let v be a vertex of a graph G, we use $N_G(v)$ to denote the vertices that are adjacent to v. Let $u, v \in V(G)$, d(u, v) denote the distance between u and v. Let $A \subseteq V(G)$, we denote by $N_G(A)$ the vertex set $\bigcup_{v \in V(A)} N_G(v) \setminus V(G)$

Fig. 1. The 3-dimensional Folded hypercube.

V(A) and $C_G(A) = N_G(A) \bigcup A$. And also, we use $\theta_G(g)$ to denote the minimum number of vertices that are adjacent to a vertex set of g vertices in G. Let g(G) denote the girth of the graph G, that is, the shortest cycle in G. A graph G is k-regular if every vertex in G has degree k. A graph G is connected if any two vertices of V(G) contain at least one path. The vertex set G of G is a cut set if G is disconnected. The connectivity of G denoted by G is defined as the minimum size of a vertex cut if G is not a complete graph, and G is G is G if otherwise. We say that a graph G is G is G is G in the graph G is G in the detail.

It is known that the connectivity of FQ_n is n+1. So we study the strongly Menger connectivity of FQ_n with at most n-1 vertices deleted. Moreover, if we restrict a condition such that each vertex has at least two fault-free adjacent vertices, all folded hypercubes are still strong Menger-connected, even if there are up to 2n-3 vertex faults.

3. Strong Menger connectivity of folded hypercubes

In this section, we will show that the folded hypercubes are strongly Menger-connected if there are at most n-1 vertex faults. Before proving this result, we need the following lemmas.

Lemma 3.1 ([13,20]). Let S be a vertex set in $V(Q_n)$ with |S| = g, then

$$\theta_{Q_n}(g) = -\frac{1}{2}g^2 + (n - \frac{1}{2})g + 1$$
 for $1 \le g \le n + 1$,
 $\theta_{Q_n}(g) = -\frac{1}{2}g^2 + (2n - \frac{3}{2})g - n^2 + 2$ for $n + 2 \le g \le 2n$.

Lemma 3.2 ([19]). Let $n \ge 4$ and $F \subseteq V(Q_n)$. Then the following holds.

(i) If $|F| < \theta_{Q_n}(g)$ and $1 \le g \le n-3$, then $Q_n - F$ contains exactly one large component of order at least $2^n - |F| - (g-1)$.

(ii) If $|F| < \theta_{Q_n}(g)$ and $n-2 \le g \le n+1$, then $Q_n - F$ contains exactly one large component of order at least $2^n - |F| - (n+1)$.

Download English Version:

https://daneshyari.com/en/article/4950838

Download Persian Version:

https://daneshyari.com/article/4950838

<u>Daneshyari.com</u>