
Information Processing Letters 125 (2017) 35–40

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A linear time algorithm for maximal clique enumeration in

large sparse graphs

Ting Yu, Mengchi Liu ∗

State Key Lab of Software Engineering, Wuhan University, Hubei, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 March 2016
Received in revised form 12 April 2017
Accepted 11 May 2017
Available online 19 May 2017
Communicated by R. Uehara

Keywords:
Graph algorithms
Maximal clique enumeration
Data structures
Computational complexity
Linear time algorithms

A maximal clique is one of the most fundamental dense substructures in an undirected
graph, and maximal clique enumeration (MCE) plays an essential role in densely connected
subgraphs discovering. Existing algorithms of maximal clique enumeration employ recur-
sive iteration of adjacent nodes as guiding thought, which incurs high time complexity.
In this paper, we propose a linear time algorithm, CM-Constructor (Candidate Map Con-
structor), for maximal clique enumeration in large sparse graphs which generates a novel
data structure called candidate map as result. A candidate map holds not only all maxi-
mal cliques of an undirected graph but also some non-maximal cliques that can be easily
discarded via an inverted clique tree. To the best of our knowledge, CM-Constructor is the
first algorithm to tackle maximal clique enumeration problem utilizing linear procedure.
It generates all maximal cliques without duplications for an undirected graph G = (V , E)

within O (|E|) time.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A clique is a subgraph with no less than two vertices
in which every vertex connects to each other. A maxi-
mal clique is a clique that is not subset of any other
cliques. Maximal clique enumeration, also known as max-
imal clique finding [1,2], is a classical fundamental issue
in the field of graph theory that has been investigated for
decades and has several variations [3,4]. Maximal clique
enumeration is to mine all the maximal cliques in an undi-
rected graph. For example, from the graph in Fig. 1, we
can find 8 maximal cliques: {a,b, c,d}, {b, c,d, e}, {c, e, f },
{e, g, l}, {e,k}, {g,h, i}, {g, i, l} and {i, j}. The problem has
numerous applications in diverse domains such as data
mining on web graphs, social networks, and biological
networks. Despite numerous approaches concentrating on

* Corresponding author.
E-mail addresses: yuting@whu.edu.cn (T. Yu), mengchi@scs.carleton.ca

(M. Liu).

Fig. 1. An example graph.

MCE proposed, most algorithms employ recursive itera-
tion procedure to exhaustive list and estimate all possible
cliques.

The first expansion-based algorithm for generating all
the maximal cliques has been proposed by Bron and Ker-
bosch [5]. The algorithm utilizes depth-first search strategy
and maintains three disjoint vertex sets R , P , and X , where
R is a candidate clique; P holds all the shared neigh-
bors of the vertices in R; X recording the visited common
neighbors of R is used to hint R as a non-maximal clique.
Within a recursive call of the procedure, whenever P is
not empty, the algorithm chooses a vertex v from P to
construct new candidate clique R ′ = R ∪ {v}, new common

http://dx.doi.org/10.1016/j.ipl.2017.05.005
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.05.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:yuting@whu.edu.cn
mailto:mengchi@scs.carleton.ca
http://dx.doi.org/10.1016/j.ipl.2017.05.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.05.005&domain=pdf

36 T. Yu, M. Liu / Information Processing Letters 125 (2017) 35–40

neighbors P ′ = P ∩ Nv (Nv is the neighbor set of v) and
new visited common neighbors X ′ = X ∩ Nv , and recur-
sively calls the procedure with R ′ , P ′ and X ′ . After the call,
the chosen vertex v is moved from P to X .

Since then, many algorithms have been proposed to im-
prove Bron–Kerbosch algorithm [6–11]. Those optimized
algorithms try to cut down the execution time via vari-
ous strategies such as choosing pivot instead of random
vertex from P [7], building degeneracy order for graph [9]
and parallelizing the algorithm utilizing parallel framework
MapReduce [12,2,13,11,14]. However, the overall idea of
using recursive iteration procedure based on depth-first
search algorithm has not been changed.

Furthermore, another serial of approaches adopting
shrinkage-based algorithm have been studied [15,16].
Those approaches also utilize recursive iteration procedure
to iterate objective graph in a top-down fashion, which is
opposite to Bron–Kerbosch algorithm.

The existing recursive algorithms are ubiquitously used
in real world because recursive iteration procedure is not
too complicated to be understood and realized in applica-
tions due to its intuitive nature. However, those algorithms
are confronted with two problems with the sharply in-
creasing of graph scale: (1) generating a large amount of
unnecessary search paths during exhaustivity backtracking
every candidate neighbor searching for candidate cliques;
(2) excessive execution time wasted by set operations such
as calculating intersection and difference of vertex sets
during the infinity recursive iterations. The second prob-
lem is extremely striking in optimized Bron–Kerbosch al-
gorithms for the reason that selecting a pivot vertex from
P will gain several extra intersection operations in every
recursive call [7,9].

To solve the problems, we propose in this paper a linear
time algorithm for maximal clique enumeration for large
sparse graphs. The contributions of the paper are as fol-
lows:

(1) A novel structure, called candidate map (CM), is de-
signed to hold all the candidate cliques during the
construction of maximal cliques. The candidate map
reduces the overhead on set operations via represent-
ing cliques as ordered lists instead of sets.

(2) A fast algorithm, called CM-Constructor, is proposed.
Unlike previous algorithms, CM-Constructor is the first
algorithm, to the best of our knowledge, introduc-
ing linear procedure to the problem. It accomplishes
the task via only one traversing of all the edges in a
graph and constructs a candidate map as result record-
ing all maximal cliques without duplications. For any
large sparse graph, CM-Constructor is executed in lin-
ear time O (|E|) which is related to the edge num-
ber |E|.

(3) An efficient tactic is designed to extract all maxi-
mal cliques and discard non-maximal cliques via one
traversing of the candidate map based on a special
structure: inverted clique tree.

2. Problem definition

Let G = (V , E) be an undirected graph. In CM-
Constructor algorithm, all the vertices in graph G are

Table 1
Description of symbols.

Symbol Description

vi The i-th vertex in the predefined total order
HC The smallest vertex in clique C
B v Clique body list of vertex v in G
Nv The set of neighbors of a vertex v in G
Ns

v Small neighbor list of a vertex v in G
Nb

v Big neighbor list of a vertex v in G

sorted in a predefined total order before finding maximal
cliques. Every vertex vi ∈ V represents the i-th element in
the order. See Table 1.

Definition 2.1. For two vertices vi, v j ∈ V , i �= j, we say
vi is smaller than v j (denoted as vi < v j) if i < j. In the
opposite, vi is bigger than v j (denoted as vi > v j) if i > j.

In a clique C of no less than two vertices, HC (called
clique header) is the smallest vertex in C . The clique C is
also called HC -header clique. Note that there can be two or
more v-header cliques for a vertex v in G . If not specified,
a clique is an ordered list of vertices in the remainder of
this paper. Thus, HC is the first vertex in clique C , and the
rest vertex list in the clique (called clique body) is C \ {HC }.
The symbol B v stands for clique body list, which is a list
of clique body of v-header cliques.

Definition 2.2. A clique C is sorted smaller than vertex vi if
HC < vi . Similarly, a clique Ci is sorted smaller than clique
C j if HCi < HC j .

The set of neighbors of a vertex v in G is represented
as Nv = {u | (u, v) ∈ E}. When loading the graph, the al-
gorithm generates two neighbor lists Ns

v and Nb
v for each

vertex v in the graph, where Ns
v is small neighbor list

recording all the vertices in Nv that are smaller than v
and Nb

v is big neighbor list holding all the vertices in Nv

that are bigger than v . Thus, the number of vertices in the
two lists are

∣∣Ns
v

∣∣ and
∣∣Nb

v

∣∣ respectively. Vertices in both
Ns

v and Nb
v are sorted in the predefined total order.

3. Algorithm

The predefined total order could be set as an arbitrary
order. In this paper, we employ alphabetical ascending or-
der as the predefined total order for convenience. For the
graph in Fig. 1, vertices are sorted as: a < b < c < d < e <
f < g < h < i < j < k < l. Before constructing candidate
map, the graph G is loaded to memory by a scan of edge
set E to build vertex structure list for every vertex. The
vertex structure list of graph in Fig. 1 is given in Table 2.
Each vertex structure contains three fields: small neighbor
list (SNL), vertex name and big neighbor list (BNL).

3.1. Candidate map

Definition 3.1. A clique Ci is a v-header maximal clique,
if HCi = v and there is no other clique C j satisfies that
HC j = v and Ci ⊂ C j .

Download English Version:

https://daneshyari.com/en/article/4950839

Download Persian Version:

https://daneshyari.com/article/4950839

Daneshyari.com

https://daneshyari.com/en/article/4950839
https://daneshyari.com/article/4950839
https://daneshyari.com

