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A maximal clique is one of the most fundamental dense substructures in an undirected 
graph, and maximal clique enumeration (MCE) plays an essential role in densely connected 
subgraphs discovering. Existing algorithms of maximal clique enumeration employ recur-
sive iteration of adjacent nodes as guiding thought, which incurs high time complexity. 
In this paper, we propose a linear time algorithm, CM-Constructor (Candidate Map Con-
structor), for maximal clique enumeration in large sparse graphs which generates a novel 
data structure called candidate map as result. A candidate map holds not only all maxi-
mal cliques of an undirected graph but also some non-maximal cliques that can be easily 
discarded via an inverted clique tree. To the best of our knowledge, CM-Constructor is the 
first algorithm to tackle maximal clique enumeration problem utilizing linear procedure. 
It generates all maximal cliques without duplications for an undirected graph G = (V , E)

within O  (|E|) time.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A clique is a subgraph with no less than two vertices 
in which every vertex connects to each other. A maxi-
mal clique is a clique that is not subset of any other 
cliques. Maximal clique enumeration, also known as max-
imal clique finding [1,2], is a classical fundamental issue 
in the field of graph theory that has been investigated for 
decades and has several variations [3,4]. Maximal clique 
enumeration is to mine all the maximal cliques in an undi-
rected graph. For example, from the graph in Fig. 1, we 
can find 8 maximal cliques: {a,b, c,d}, {b, c,d, e}, {c, e, f }, 
{e, g, l}, {e,k}, {g,h, i}, {g, i, l} and {i, j}. The problem has 
numerous applications in diverse domains such as data 
mining on web graphs, social networks, and biological 
networks. Despite numerous approaches concentrating on 
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Fig. 1. An example graph.

MCE proposed, most algorithms employ recursive itera-
tion procedure to exhaustive list and estimate all possible 
cliques.

The first expansion-based algorithm for generating all 
the maximal cliques has been proposed by Bron and Ker-
bosch [5]. The algorithm utilizes depth-first search strategy 
and maintains three disjoint vertex sets R , P , and X , where 
R is a candidate clique; P holds all the shared neigh-
bors of the vertices in R; X recording the visited common 
neighbors of R is used to hint R as a non-maximal clique. 
Within a recursive call of the procedure, whenever P is 
not empty, the algorithm chooses a vertex v from P to 
construct new candidate clique R ′ = R ∪ {v}, new common 
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neighbors P ′ = P ∩ Nv (Nv is the neighbor set of v) and 
new visited common neighbors X ′ = X ∩ Nv , and recur-
sively calls the procedure with R ′ , P ′ and X ′ . After the call, 
the chosen vertex v is moved from P to X .

Since then, many algorithms have been proposed to im-
prove Bron–Kerbosch algorithm [6–11]. Those optimized 
algorithms try to cut down the execution time via vari-
ous strategies such as choosing pivot instead of random 
vertex from P [7], building degeneracy order for graph [9]
and parallelizing the algorithm utilizing parallel framework 
MapReduce [12,2,13,11,14]. However, the overall idea of 
using recursive iteration procedure based on depth-first 
search algorithm has not been changed.

Furthermore, another serial of approaches adopting 
shrinkage-based algorithm have been studied [15,16]. 
Those approaches also utilize recursive iteration procedure 
to iterate objective graph in a top-down fashion, which is 
opposite to Bron–Kerbosch algorithm.

The existing recursive algorithms are ubiquitously used 
in real world because recursive iteration procedure is not 
too complicated to be understood and realized in applica-
tions due to its intuitive nature. However, those algorithms 
are confronted with two problems with the sharply in-
creasing of graph scale: (1) generating a large amount of 
unnecessary search paths during exhaustivity backtracking 
every candidate neighbor searching for candidate cliques;
(2) excessive execution time wasted by set operations such 
as calculating intersection and difference of vertex sets 
during the infinity recursive iterations. The second prob-
lem is extremely striking in optimized Bron–Kerbosch al-
gorithms for the reason that selecting a pivot vertex from 
P will gain several extra intersection operations in every 
recursive call [7,9].

To solve the problems, we propose in this paper a linear 
time algorithm for maximal clique enumeration for large 
sparse graphs. The contributions of the paper are as fol-
lows:

(1) A novel structure, called candidate map (CM), is de-
signed to hold all the candidate cliques during the 
construction of maximal cliques. The candidate map 
reduces the overhead on set operations via represent-
ing cliques as ordered lists instead of sets.

(2) A fast algorithm, called CM-Constructor, is proposed. 
Unlike previous algorithms, CM-Constructor is the first 
algorithm, to the best of our knowledge, introduc-
ing linear procedure to the problem. It accomplishes 
the task via only one traversing of all the edges in a 
graph and constructs a candidate map as result record-
ing all maximal cliques without duplications. For any 
large sparse graph, CM-Constructor is executed in lin-
ear time O  (|E|) which is related to the edge num-
ber |E|.

(3) An efficient tactic is designed to extract all maxi-
mal cliques and discard non-maximal cliques via one 
traversing of the candidate map based on a special 
structure: inverted clique tree.

2. Problem definition

Let G = (V , E) be an undirected graph. In CM-
Constructor algorithm, all the vertices in graph G are 

Table 1
Description of symbols.

Symbol Description

vi The i-th vertex in the predefined total order
HC The smallest vertex in clique C
B v Clique body list of vertex v in G
Nv The set of neighbors of a vertex v in G
Ns

v Small neighbor list of a vertex v in G
Nb

v Big neighbor list of a vertex v in G

sorted in a predefined total order before finding maximal 
cliques. Every vertex vi ∈ V represents the i-th element in 
the order. See Table 1.

Definition 2.1. For two vertices vi, v j ∈ V , i �= j, we say 
vi is smaller than v j (denoted as vi < v j) if i < j. In the 
opposite, vi is bigger than v j (denoted as vi > v j) if i > j.

In a clique C of no less than two vertices, HC (called 
clique header) is the smallest vertex in C . The clique C is 
also called HC -header clique. Note that there can be two or 
more v-header cliques for a vertex v in G . If not specified, 
a clique is an ordered list of vertices in the remainder of 
this paper. Thus, HC is the first vertex in clique C , and the 
rest vertex list in the clique (called clique body) is C \ {HC }. 
The symbol B v stands for clique body list, which is a list 
of clique body of v-header cliques.

Definition 2.2. A clique C is sorted smaller than vertex vi if 
HC < vi . Similarly, a clique Ci is sorted smaller than clique 
C j if HCi < HC j .

The set of neighbors of a vertex v in G is represented 
as Nv = {u | (u, v) ∈ E}. When loading the graph, the al-
gorithm generates two neighbor lists Ns

v and Nb
v for each 

vertex v in the graph, where Ns
v is small neighbor list 

recording all the vertices in Nv that are smaller than v
and Nb

v is big neighbor list holding all the vertices in Nv

that are bigger than v . Thus, the number of vertices in the 
two lists are 

∣∣Ns
v

∣∣ and 
∣∣Nb

v

∣∣ respectively. Vertices in both 
Ns

v and Nb
v are sorted in the predefined total order.

3. Algorithm

The predefined total order could be set as an arbitrary 
order. In this paper, we employ alphabetical ascending or-
der as the predefined total order for convenience. For the 
graph in Fig. 1, vertices are sorted as: a < b < c < d < e <
f < g < h < i < j < k < l. Before constructing candidate 
map, the graph G is loaded to memory by a scan of edge 
set E to build vertex structure list for every vertex. The 
vertex structure list of graph in Fig. 1 is given in Table 2. 
Each vertex structure contains three fields: small neighbor 
list (SNL), vertex name and big neighbor list (BNL).

3.1. Candidate map

Definition 3.1. A clique Ci is a v-header maximal clique, 
if HCi = v and there is no other clique C j satisfies that 
HC j = v and Ci ⊂ C j .
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