
Information Processing Letters 125 (2017) 41–45

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Optimal depth-first algorithms and equilibria of independent 

distributions on multi-branching trees

Weiguang Peng a, NingNing Peng b,∗, KengMeng Ng c, Kazuyuki Tanaka a, 
Yue Yang d

a Mathematical Institute, Tohoku University, Japan
b Department of Mathematics, Wuhan University of Technology, China
c School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
d Department of Mathematics, National University of Singapore, Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 June 2016
Received in revised form 10 April 2017
Accepted 11 May 2017
Available online 17 May 2017
Communicated by R. Uehara

Keywords:
Multi-branching trees
Depth-first algorithms
Independent distribution
Computational complexity
Analysis of algorithms

The main purpose of this paper is to answer two questions about the distributional 
complexity of multi-branching trees. We first show that for any independent distribution d
on assignments for a multi-branching tree, a certain directional algorithm DIRd is optimal 
among all the depth-first algorithms (including non-directional ones) with respect to d. We 
next generalize Suzuki–Niida’s result on binary trees to the case of multi-branching trees. 
By means of this result and our optimal algorithm, we show that for any balanced multi-
branching AND–OR tree, the optimal distributional complexity among all the independent 
distributions (ID) is (under an assumption that the probability of the root having value 0 
is neither 0 nor 1) actually achieved by an independent and identical distribution (IID).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we investigate the optimal depth-first al-
gorithms and equilibria of independent distributions on 
multi-branching trees, in which every node may have dif-
ferent numbers of children. The height of a tree is the 
length of the longest path from the root to its leaves. Here, 
a balanced multi-branching tree means a tree such that all 
the non-terminal nodes at the same level have the same 
number of children and all paths from the root to the 
leaves are of the same length.

We first review some basic notions and results on game 
trees. An AND–OR tree (OR–AND tree, respectively) is a 
multi-branching tree such that the root is labeled AND 
(OR), and sequentially the internal nodes are level-by-level 

* Corresponding author.
E-mail address: pengn@whut.edu.cn (N. Peng).

labeled by OR and AND (AND and OR) alternatively. An as-
signment for a tree is a mapping from the set of leaves 
to Boolean values {0, 1}. By evaluating a tree, we mean to 
compute the Boolean value of the root. For a given assign-
ment, the cost of computation is defined to be the number 
of leaves that are queried to evaluate a tree. When we con-
sider probability distributions on the set of assignments, 
the cost of computation is the expected cost under the 
given distribution.

An algorithm tells us a priority of searching leaves. An 
algorithm is called alpha–beta pruning if it checks only suf-
ficiently many nodes to determine the value of the current 
subtree [1]. We assume that all the algorithms discussed 
here are deterministic alpha–beta pruning algorithms. A di-
rectional algorithm is one that queries the leaves on a given 
tree in a fixed order. SOLVE is a directional algorithm which 
evaluates a tree from left to right [3]. A depth-first algo-
rithm is one that never jumps to another subtree until it 
completes evaluating the current one. For a given probabil-

http://dx.doi.org/10.1016/j.ipl.2017.05.002
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:pengn@whut.edu.cn
http://dx.doi.org/10.1016/j.ipl.2017.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.05.002&domain=pdf


42 W. Peng et al. / Information Processing Letters 125 (2017) 41–45

ity distribution on the assignments, we are seeking for the 
optimal algorithms that can minimize the expected cost of 
computation under the given distribution.

The deterministic complexity is defined to be the mini-
mum cost to compute the worst assignment for a tree, i.e., 
min

AD
max

ω
C(AD , ω), where C(AD , ω) is the cost of an al-

gorithm AD on an assignment ω, AD ranges over all the 
deterministic algorithms and ω ranges over all the assign-
ments. A randomized algorithm is a distribution over a fam-
ily of deterministic algorithms. Then the randomized com-
plexity to evaluate a tree is defined as min

AR
max

ω
C(AR , ω), 

where C(AR , ω) is the expected cost over the correspond-
ing family of deterministic algorithms, AR ranges over all 
the randomized algorithms and ω ranges over all the as-
signments. Obviously, the randomized complexity is not 
larger than the deterministic complexity.

Saks and Wigderson [5] calculated the randomized 
complexity for any balanced n-branching tree (each non-
terminal node has n children) with height h to be

�((
n−1+

√
n2+14n+1
4 )h). Yao’s principle [9] indicates that the 

randomized complexity is equivalent to the distributional 
complexity, max

d
min

AD

C(AD , d) with AD ranging over the 

deterministic algorithms and d over the distributions on 
assignments. Yao’s principle provides a profound perspec-
tive to analyze randomized algorithms.

Liu and Tanaka [2], subsequent to the study of Saks 
and Wigderson, investigated the uniform binary trees from 
the viewpoint of distributional complexity. A distribution δ
is said to achieve the distributional complexity (or equi-
librium) if and only if min

AD

C(AD , δ) = max
d

min
AD

C(AD , d). 

They assert that for any uniform binary AND–OR tree, if 
the equilibrium is achieved by an independent distribution 
(ID), then it is, in fact, an independent and identical distri-
bution (IID). However, [2] does not include a proof of the 
assertion. Recently, Suzuki and Niida [7] gave a proof for 
the case where the probability of the root is constrained 
for uniform binary trees and showed Liu–Tanaka’s asser-
tion.

We treat probability distributions on multi-branching 
trees. In Section 2, for any ID d, we define a directional al-
gorithm DIRd , and show it is optimal among all the depth-
first algorithms with respect to d for any multi-branching 
tree. Recall Tarsi’s theorem [8] that SOLVE is optimal for 
IID. Our result is on ID among all the depth-first algo-
rithms (with certain conditions) while Tarsi’s theorem is 
on IID among all the algorithms not necessarily depth-first. 
In Section 3, we first extend the fundamental relationships 
between the minimum expected cost and the probabil-
ity of the root of tree being 0 in [7] to balanced multi-
branching trees. Based on this, we show that, for any ID d, 
there exists an IID d′ such that the expected cost with d
is not larger than that with d′ following DIRd . Then we 
establish Liu–Tanaka’s assertion for any balanced multi-
branching AND–OR tree (under an assumption that the 
probability of the root having value 0 is neither 0 nor 1).

2. DIRd is optimal among all the depth-first algorithms

Let � be the set of assignments for a given tree. We say 
d : � → [0, 1] is an independent distribution (denote d ∈ ID) 
if there exist pi ’s (the probability of the i-th leaf being 0) 
such that for any ω ∈ �, d(ω) = ∏

{i: ω(i)=0}
pi

∏
{i: ω(i)=1}

(1 −
pi). We say d ∈ IID if d is an ID satisfying p1 = p2 =
· · · = pn . By C(A, ω), we denote the number of leaves 
checked by an algorithm A with an assignment ω.

Given d ∈ ID and an algorithm A, for each node σ on T , 
we define Cσ (A, d) and pσ (d) to be the evaluation cost of 
σ and the probability of σ being 0. Remark that if σ is 
a leaf, then Cσ (A, d) = 1 and pσ (d) = pi . If σ is a non-
terminal node and A is an algorithm on Tσ , Cσ (A, d) is 
the expected cost of computing the value of σ following A, 
and pσ (d) is the probability of σ being 0.

For any non-terminal node σ in T , Tσ denotes the sub-
tree of T rooted from σ . For a node σ with n children, 
Tσ∗i (1 ≤ i ≤ n) denotes the i-th subtree under σ from left 
to right, and particularly for the root λ, its subtree is sim-
plified as Ti . For simplicity, we denote C(A, d) = Cλ(A, d)

at root λ, and qσ = pσ (d) at any node σ . By qi , we denote 
the probability of the root of Ti being 0 with respect to d.

Definition 1. For any uniform binary tree T and d ∈ ID
on T , the depth-first directional algorithm DIRd is defined 
inductively as follows. The basic case is trivial. For the in-
duction case, let σ ∗ i (i = 1, 2) be a child of non-terminal 
node σ , and assume DIRdσ∗i has been defined for each sub-
tree Tσ∗i .

(1) In the case that σ is labeled ∧, DIRdσ is the concatena-
tion of DIRdσ∗1 and DIRdσ∗2 (denote DIRdσ := DIRdσ∗1 ·
DIRdσ∗2 ) if 

Cσ∗1(DIRdσ∗1 , dσ∗1)

qσ∗1
≤ Cσ∗2(DIRdσ∗2 , dσ∗2)

qσ∗2
, other-

wise DIRdσ := DIRdσ∗2 · DIRdσ∗1 .
(2) In the case that σ is labeled ∨, DIRdσ := DIRdσ∗1 ·

DIRdσ∗2 if 
Cσ∗1(DIRdσ∗1 , dσ∗1)

1−qσ∗1
≤ Cσ∗2(DIRdσ∗2 , dσ∗2)

1−qσ∗2
, other-

wise DIRdσ := DIRdσ∗2 · DIRdσ∗1 .

Theorem 1. For any uniform binary tree T and d ∈ ID, if A is 
any depth-first algorithm, then C(A, d) ≥ C(DIRd, d), i.e., DIRd
is optimal among all the depth-first algorithms.

Proof. We prove this by induction on height h. The base 
case is trivial. For the induction step, let T be a uniform bi-
nary tree with height h + 1, where the root λ is labeled ∧. 
The other case can be shown similarly.

Suppose that DIRdi is optimal for each subtree Ti with 
height h. Let �h+1 be the set of assignments for T , �h
and �′

h the set of assignments for T1 and T2. For any d ∈
ID on T , there exist di for Ti(i = 1, 2) such that d(ω) =
d1(ω1) × d2(ω2), where ω = ω1ω2, ω1 ∈ �h and ω2 ∈ �′

h . 
For any depth-first algorithm A and d ∈ ID, if A evaluates 
the subtree T1 first, then C(A, d) = ∑

ω∈�h+1

C(A, ω) · d(ω) =
∑

ω∈�0
C(A, ω) ·d(ω) + ∑

ω∈�1
C(A, ω) ·d(ω), where �i := {ω ∈

�h+1 | the root of T1 has value i with ω}.
Assume A is a depth-first non-directional algorithm. By 

A1, we denote the algorithm of A for T1, and by Aω1



Download English Version:

https://daneshyari.com/en/article/4950840

Download Persian Version:

https://daneshyari.com/article/4950840

Daneshyari.com

https://daneshyari.com/en/article/4950840
https://daneshyari.com/article/4950840
https://daneshyari.com

