
Applied Soft Computing 30 (2015) 529–548

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A directional mutation operator for differential evolution algorithms

Xin Zhanga, Shiu Yin Yuenb,∗

a College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, China
b Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China

a r t i c l e i n f o

Article history:
Received 26 June 2012
Received in revised form 3 February 2015
Accepted 3 February 2015
Available online 11 February 2015

Keywords:
Differential evolution
Directional mutation
Generic mutation operator
Global numerical optimization

a b s t r a c t

Differential evolution (DE) is widely studied in the past decade. In its mutation operator, the random
variations are derived from the difference of two randomly selected different individuals. Difference vec-
tor plays an important role in evolution. It is observed that the best fitness found so far by DE cannot be
improved in every generation. In this article, a directional mutation operator is proposed. It attempts to
recognize good variation directions and increase the number of generations having fitness improvement.
The idea is to construct a pool of difference vectors calculated when fitness is improved at a generation.
The difference vector pool will guide the mutation search in the next generation once only. The directional
mutation operator can be applied into any DE mutation strategy. The purpose is to speed up the conver-
gence of DE and improve its performance. The proposed method is evaluated experimentally on CEC 2005
test set with dimension 30 and on CEC 2008 test set with dimensions 100 and 1000. It is demonstrated
that the proposed method can result in a larger number of generations having fitness improvement than
classic DE. It is combined with eleven DE algorithms as examples of how to combine with other algo-
rithms. After its incorporation, the performance of most of these DE algorithms is significantly improved.
Moreover, simulation results show that the directional mutation operator is helpful for balancing the
exploration and exploitation capacity of the tested DE algorithms. Furthermore, the directional mutation
operator modifications can save computational time compared to the original algorithms. The proposed
approach is compared with the proximity based mutation operator as both are claimed to be applicable
to any DE mutation strategy. The directional mutation operator is shown to be better than the proximity
based mutation operator on the five variants in the DE family. Finally, the applications of two real world
engineering optimization problems verify the usefulness of the proposed method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs)[1,2] are inspired from natural
evolution of species. The procedures of EAs parallel those in the evo-
lutionary process of species. Typically, EAs are population-based
and depend on variation operators and survivor selection to realize
the evolutionary process. They only assume that function values
can be obtained given a feasible solution. There is no assumption
about the explicit expression or differentiability of the function. In
EAs, the function to be optimized is often called fitness functions;
the domain of variables called search space; a feasible solution
called individual and the function value of a feasible solution
called fitness or fitness value. In practice, EAs have been applied to
many fields such as engineering design[3], energy management[4],

∗ Corresponding author. Tel.: +852 34427717.
E-mail addresses: xinzhang9-c@my.cityu.edu.hk (X. Zhang),

kelviny.ee@cityu.edu.hk (S.Y. Yuen).

financial strategies [5] and computer vision [6] etc. These applica-
tions justify the usefulness of EAs.

Generally, the study of EAs is targeted to propose an algorithm
that is applicable to a class of problems, is computationally efficient
and converges quickly to the global optimum. Several popular EAs
are genetic algorithm (GA)[7], genetic programming (GP), evolu-
tion strategies (ES), evolutionary programming (EP) and differential
evolution (DE). Note that some researchers consider DE as a swarm
intelligence algorithm. The classic version of DE is simple to imple-
ment, ea sy to use and fast. Although some classic EAs are easy to be
programmed and computationally efficient, yet the classic version
of EA is often stuck in a local optimum of fitness functions. Hence,
numerous researches are proposed to balance the exploitation and
exploration search process of EAs. A good and robust EA should
not only have a fast convergence rate, but can also reach the global
optimum for complex fitness function with many local optima.

DE, proposed in the mid-1990s, has been extensively studied.
Many variants of DE are reported in the past decade. The paradigm
of DE is shown to be very powerful. For example, it secures com-
petitive rankings in all IEEE Congress on Evolutionary Computation

http://dx.doi.org/10.1016/j.asoc.2015.02.005
1568-4946/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2015.02.005
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2015.02.005&domain=pdf
mailto:xinzhang9-c@my.cityu.edu.hk
mailto:kelviny.ee@cityu.edu.hk
dx.doi.org/10.1016/j.asoc.2015.02.005

530 X. Zhang, S.Y. Yuen / Applied Soft Computing 30 (2015) 529–548

(CEC) competitions, whereas no other search paradigm presents
such a good performance [8]. The procedure that makes DE stand
out is the mutation operator. Specifically, three mutually differ-
ent individuals are randomly selected from the population. One of
them is set as a base, and then it is added with the scaled difference
of the other two individuals. To scale the difference is to control
the search neighborhood and thus to increase the exploitation and
exploration capacity. In this paper, without loss of generality, we
assume that the optimization is a minimization problem; fitness
improvement means the fitness of a generated individual is less
than or equal to the minimal fitness found so far by the algorithm.
Why a new individual having equal minimal fitness is seen as an
improvement? The reason is to escape from a plateau.

Through the above analysis, it is known that difference vectors
are helpful for fitness improvement. It is important to point out
that these differences only provide a possibility of improvement.
It is not guaranteed that fitness would be improved at each muta-
tion operation, or even after a number of mutation operations, say
in one generation. Actually, in computer simulations, we observe
that the number of generations that can obtain fitness improve-
ment is less than half of the total number of generations (see
Section 4.3). Moreover, not only is improving the fitness impera-
tive, but the quantity of improvement is also crucial; otherwise, if
only a slight improvement is obtained at every generation, the ulti-
mate performance would not be good either, especially when the
computational time or the total number of function evaluations is
limited.

On the one hand, the difference of two individuals is helpful for
improving fitness; one the other hand, fitness improvement cannot
happen at every generation. In the case that fitness improvement
happens, the child individual should contain some better compo-
nents than its parent individual. In this case, the difference vector
of the child and parent individual can be seen as a good direction.
Note that this direction may not be a descent direction. Because
this direction leads to a child having better fitness than its parent,
a further fitness improvement is possible if continuously search-
ing along this direction. This difference vector should have a higher
probability to be a descent direction resulting in better fitness value
than the difference of two randomly selected individuals. Hence, we
come up with the idea that uses the difference between the child
and parent individuals in the case that fitness value is improved to
guide the search in the next generation. It is expected to increase
the number of generations that improve the fitness, and thus accel-
erate the convergence process and achieve a better performance.
Note that our discussion is based on fitness improvement between
two consecutive generations. It is on the population level. The dif-
ference information is not immediately fed back to the current
generation. In other words, we discuss whether fitness value is
improved after a new population of individuals is generated. Once
fitness improvement happens between two consecutive genera-
tions, the differences will be used to guide the search of the next
generation.

The character of this idea is similar to the swarm behavior in
a swarm system. In swarm intelligence, individuals are sent out
to search for a good fitness and share their collected informa-
tion. Then, more efforts are paid to search the neighborhood of
the location where high fitness is obtained; whereas less effort
is expended to search the neighborhood of the location with low
fitness obtained. In our case, once fitness value is improved at a gen-
eration, the difference vectors are collected. Clearly, they contain
direction information toward to high fitness. In the next generation,
more effort is made to search along these difference vectors.

The most important character of this idea is that the idea is
generic; it can be combined with any variants of DE. Because it
works on the mutation operator and mutation is an essential part
of DE, hence, the proposed method can be incorporated into any

variants of DE. It is expected that this idea is an intrinsic improve-
ment to DE.

The rest of the paper is organized as follows. Section 2 reports
a summary of DE and related works. Section 3 presents the pro-
posed approach, its pseudo-code and an analysis of this approach.
Section 4 reports the experimental results compared with classic
DE, and results after combining the proposed method with eleven
DE algorithms. The proposed approach is also compared with the
proximity-based mutation operator. It is tested on two real-world
engineering optimization problems in Section 5. Section 6 gives the
conclusion.

2. Differential evolution and related works

This section describes the classic DE method and mutation vari-
ants in the DE family of Storn and Price [8,9]. Some related works
since 2005 are given in three categories.

Through the paper, suppose the real parameter optimization
problem is to find the global minimization solution. The problem is
represented as f(·). An individual x is represented as a D × 1 col-
umn vector, e.g. x = [x1, x2, · · · , xD]T, where D is the dimension
of the optimization problem, xj(1 ≤ j ≤ D), is the jth component
(gene) of x. f(x) means the function value at x. In this paper, fit-
ness value is used as a synonym of function value. The search space

� is delimited by two vectors xmin = [xmin
1 , · · ·, xmin

j
, · · ·, xmin

D]
T

and

xmax = [xmax
1 , · · ·, xmax

j
, · · ·, xmax

D]T , denoting the lower bound and
upper bound of the search space.

2.1. Classic differential evolution

In general, DE is composed of four steps as first introduced by
Storn and Price [10,11]. The four steps are initialization, mutation,
crossover, and survivor selection. DE is a population based method.
The initialization step is to randomly generate a population of NP
individuals, where NP is the population size predefined by the user.
Each component of an individual is randomly generated between
the lower bound and upper bound. The initialized population is
denoted as G1 = {x1,1, · · · , xi,1, · · · , xNP,1}, where the two subscripts
of each individual stand for the order of the individual in the popu-
lation and the number of the generations, respectively. The number
of generations NG is predefined by the user. Mathematically, the ith
individual xi,1 = [x1,i,1, · · · , xj,i,1, · · · , xD,i,1]T in the first generation is
generated as follows:

xj,i,1 = xmin
j + (xmax

j − xmin
j) · rand(0, 1), j = 1, · · ·, D

where rand(0, 1) returns a uniformly distributed random number
between 0 and 1 (0 ≤ rand(0, 1) ≤ 1).

Example 1. Suppose a minimization problem is given as follows:

min f (x) = x2
1 + x2

2

s.t. −5 ≤ xj ≤ 5, j = 1, 2.

The problem dimension D is 2. The population size NP is 5. Initially
five solutions are randomly created. Suppose they are G1 = {x1,g,
· · · , xi,g, · · · , x5,g}: x1,g = [− 4, − 4]T, x2,g = [− 3, − 3]T, x3,g = [− 1, − 1]T,
x4,g = [2, 2]T, x5,g = [4, 4]T. Accordingly, their function values are
f(x1,g)=32, f(x2,g)=18, f(x3,g)=2, f(x4,g)=8, f(x5,g)=32.

Denote the current generation as Gg. In the mutation step,
NP mutant vectors will be generated, denoted as V = {v1,g, · · · ,
vi,g, · · · , vNP,g}. Now, take the generation of the ith mutant vec-
tor vi,g for example. Select three mutually different individuals
from the current population. Suppose the chosen individuals are
denoted as xr1,g, xr2,g, xr3,g, where r1, r2 and r3 are three mutually

Download English Version:

https://daneshyari.com/en/article/495086

Download Persian Version:

https://daneshyari.com/article/495086

Daneshyari.com

https://daneshyari.com/en/article/495086
https://daneshyari.com/article/495086
https://daneshyari.com

