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In an earlier paper (Bao and Liu [1]), we considered a version of the clustered traveling 
salesman problem (CTSP), in which both the starting and ending vertex of each cluster are 
free to be selected, and proposed a 2.167-approximation algorithm. In this note, we first 
improve this approximation ratio to 1.9 by introducing a new method to define the inter-
node lengths for all the nodes in Step 2 of Algorithm A of Bao and Liu [1]. Based on 
the above method, we then provide a 2.5-approximation algorithm for another version of 
CTSP where the starting vertex of each cluster is given while the ending vertex is free to 
be selected, which improves the previous approximation ratio of 2.643 of Guttmann-Beck 
et al. [5].

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Given a complete undirected graph G = (V , E), where 
V is the vertex set partitioned into K clusters V 1, V 2,

· · · , V K and E is the edge set with edge lengths satisfying 
triangle inequality, the clustered traveling salesman problem
(CTSP) is to compute a shortest Hamiltonian tour so that 
all vertices are visited and the vertices of each cluster are 
visited consecutively. Guttmann-Beck et al. [5] introduced 
several versions of CTSP and pointed out that they are all 
NP-hard. In an earlier paper (Bao and Liu [1]), we con-
sidered one of the above versions of CTSP, in which no 
starting and ending vertices of any cluster are specified, 
i.e., the two vertices of each cluster are free to be selected, 
and proposed a 2.167-approximation algorithm. The algo-
rithm generates two candidate tours and then outputs the 
better one. When constructing the second candidate tour 
in Step 2 of Algorithm A given in [1], we first determine 
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the order of the clusters by regarding each cluster as a 
node and creating a tour for all the nodes, and then deter-
mine the order of the vertices in each cluster by computing 
a Hamiltonian path with two specified end vertices. One 
key to implement this process is to construct an auxil-
iary weighted graph for all the nodes, such that the edge 
lengths are as small as possible and satisfy the triangle in-
equality.

In this note, we first introduce a new method to define 
the inter-node lengths for all the nodes in Step 2 of Algo-
rithm A of Bao and Liu [1] and present a 1.9-approximation 
algorithm, for the version of CTSP in which both the start-
ing and ending vertex of each cluster are free to be se-
lected. This algorithm improves the approximation ratio of 
2.167 of Bao and Liu [1]. Based on the above method, we 
then present a 2.5-approximation algorithm, for another 
version of CTSP in which the starting vertex of each clus-
ter is given while the ending vertex is free to be selected. 
This algorithm improves the approximation ratio of 2.643 
of Guttmann-Beck et al. [5].

The remainder of this note is organized as follows. Fol-
lowing preliminaries in Section 2, we consider the version 
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of CTSP in which no starting and ending vertices of any 
cluster are specified in Section 3, and address the version 
of CTSP in which the starting vertex of each cluster is given 
while the ending vertex is free to be selected in Section 4.

2. Preliminaries

For the sake of convenience, we use the same notations 
as in Bao and Liu [1]. For a graph G = (V , E), we denote 
by ti, j the length of an edge [i, j] ∈ E . The edge lengths are 
symmetric and satisfy the triangle inequality. For an edge 
subset E ′ ⊆ E , we denote by t(E ′) = ∑

[i, j]∈E ′ ti, j the total 
length of the edges. In particular, for a Hamiltonian tour S , 
its length is given by t(S).

In the following, we review several related problems 
which are mentioned in the algorithms of Sections 3 and 4. 
Notice that the edge lengths mentioned in the problems 
are symmetric and satisfy the triangle inequality.

The Traveling Salesman Path Problem (TSPP). Here we 
only consider a special case of TSPP. Let s and t be 
two specified vertices in G . The problem is to compute 
a shortest Hamiltonian path with end vertices s and t . 
Hoogeveen [6] provided an algorithm, say Algorithm TSPP1, 
with 5/3-approximation ratio. Guttmann-Beck et al. [5]
first presented a new algorithm, say Algorithm TSPP2, and 
then selected the best of the two paths generated by Al-
gorithms TSPP1 and TSPP2 as approximate solution. This 
method makes proving 5/3-approximation easier, but more 
important, it leads to improvements in the analysis of their 
algorithms. We briefly review these two algorithms (for 
details, please see [6] and [5]).

Algorithm TSPP1 proceeds as follows: step 1. find a 
minimum-length spanning tree (MST) of the graph G; 
step 2. create a connected Eulerian path by adding to the 
MST only edges of a minimum-length perfect matching on 
the vertex set consisting of odd degree vertices of V \{s, t}
and even degree vertices of {s, t} in the MST; step 3. trans-
form the Eulerian path into a Hamiltonian path from s to 
t by applying shortcuts. Algorithms TSPP2 and TSPP1 dif-
fer in step 2 where Algorithm TSPP2 construct a connected 
Eulerian path by duplicating all edges of the MST except 
those on the unique path from s to t .

The Rural Postman Problem (RPP). Consider a graph G =
(V , E). Let E ′ = {[si, ti] : i = 1, 2, · · · , K } ⊆ E be a given 
subset of E . The problem is to compute a shortest tour 
that visits all the edges in E ′ . Frederickson [3] presented a 
3/2-approximation algorithm for RPP.

The Stacker Crane Problem (SCP). Let G = (V , E) be a 
graph. Let D = {(si, ti) : i = 1, 2, · · · , K } be a specified di-
rected arc set, where the length of arc (si, ti) equals the 
length of the corresponding edge [si, ti]. The problem is to 
compute a shortest tour which covers each arc (si, ti) in D
according to the specified direction (from si to ti ). Freder-
ickson et al. [4] presented a 9/5-approximation algorithm 
for SCP.

3. Unspecified end vertices

In this section we deal with the version of CTSP in 
which both the starting and ending vertex of each clus-
ter are free to be selected. We give an algorithm with 
an approximation ratio of 1.9. It follows the algorithm 
of Bao and Liu [1] with a modification to one candidate. 
More specifically, we introduce a new method to define 
the inter-node lengths for all the nodes in Step 2 of Bao 
and Liu’s algorithm.

Algorithm UEV.

Step 1. (See [1].) For each cluster V i , 1 ≤ i ≤ K , find ver-
tices ai and bi such that tai ,bi = max{tx,y : x, y ∈
V i}. Apply Algorithm TSPP2 to G(V i) to obtain a 
path, say pathi , with end vertices ai and bi . Apply 
the algorithm of Frederickson [3] to the edge set 
E ′ = {[ai, bi], i = 1, · · · , K } to generate a tour S ′

1. 
Replacing each edge [ai, bi] by pathi in S ′

1. We ob-
tain a candidate tour S1.

Step 2. Represent each cluster V i by a node ni , 1 ≤ i ≤ K . 
For each pair of nodes ni and n j , let t′

ni ,n j
=

min{tx,y : x ∈ V i, y ∈ V j}. Define the inter-node 
length tni ,n j as the length of the shortest path be-
tween nodes ni and n j according to t′

ni ,n j
s. It is 

easy to see that tni ,n j s satisfy the triangle inequal-
ity. For the node set {ni : i = 1, 2, · · · , K }, apply 
Christofides’ algorithm [2] to generate a tour S ′

2. 
Without loss of generality, suppose that S ′

2 =
(n1, n2, · · · , nK ) = ([c1, d2], · · · ,[cK−1, dK ], [cK , d1]), 
where ci, di ∈ V i . For each cluster V i , apply Al-
gorithm TSPP1 to G(V i) to generate a path, say 
pathi , with end vertices ci and di . Finally, S ′

2 ∪
(
⋃K

i=1 pathi) forms a candidate tour S2.
Step 3. Choose the better one of S1 and S2 as the approx-

imate solution.

We introduce several notations to analyze the algo-
rithm. Let SU E V be an optimal solution of the referred 
version of CTSP. Let Li denote the path which goes through 
cluster V i in SU E V . Let L = ⋃K

i=1 Li and A = SU E V \ L. Then, 
we have t(SU E V ) = t(L) + t(A).

Lemma 1. t(S1) ≤ 7
2 t(SU E V ) − 2t(E ′).

Proof. See Lemma 1 in Bao and Liu [1]. �
Lemma 2. t(S ′

2) ≤ 3
2 t(A).

Proof. Note that the edges in A form a tour on the node 
set {ni : i = 1, 2, · · · , K } and Christofides’ algorithm guar-
antees a 3/2 approximation solution for TSP [2]. Thus, the 
conclusion holds. �
Lemma 3. 

∑K
i=1 t(pathi) ≤ 3

2 t(L) + 1
2 t(E ′).

Proof. See Lemma 2 in Bao and Liu [1]. �



Download English Version:

https://daneshyari.com/en/article/4950870

Download Persian Version:

https://daneshyari.com/article/4950870

Daneshyari.com

https://daneshyari.com/en/article/4950870
https://daneshyari.com/article/4950870
https://daneshyari.com

