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New algorithms are proposed for generation of (n, m)-permutations, 1 ≤ m ≤ n. The 
representation of (n, m)-permutations is derived from m-level iterative decomposition of 
symmetric permutation group Sn into cosets. The control sequence produced by the 
generation algorithms appears in lexicographic order while the output sequence is obtained 
from the control sequence in a linear order. Ranking and unranking schemes for control 
sequences are given. An implementation of a hardware generator of (n, m)-permutations 
by means of a cellular interconnection network is described.
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1. Introduction

Combinatorial generation, enumeration and search are 
among basic problems in computer science [7,11,16]. In 
many application areas various classes of combinatorial ob-
jects are involved as test or problem instances. Numerous 
generation algorithms have been designed for such com-
binatorial objects like combinations, compositions, permu-
tations, derangements, variations, partitions, graphs, trees 
etc. in various representations.

In this paper we consider generation of (n, m)-permu-
tations, 1 ≤ m ≤ n, which will be called here equivalently 
variations without repetitions, or variations.

A simple algorithm for variation generation consists of 
(n, m)-combination generation followed by permutation of 
m-subsets. In this case ranking of variations involves dou-
ble indexing: by the combination index and the permuta-
tion index. However, for applications that require splitting
the object set for a balanced generation and uniform in-
dexing, two-phase generation and double-index ranking is 

E-mail address: zk@pk.edu.pl.

not acceptable and more versatile algorithms for variations 
have to be invented.

Combinatorial properties of variations and variations 
with repetitions are explained in [11,16]. Sequential and 
parallel algorithms in various models of computations 
were developed [1,2,4,5,12,15,18]. Ranking and unranking 
schemes for variations without repetitions are given in [3].

In the present paper the representation of variations is 
derived from a representation of permutations in an iter-
ative decomposition of symmetric permutation group Sn

into left cosets [14]. Algorithms for generation of (n, m)-
permutations in a linear order are constructed. The con-
trol sequences are produced in O (m) time per generated 
object. The output sequences are then obtained from the 
control sequences in O (m) time.

Ranking and unranking algorithms for (n, m)-permuta-
tions are also given. The unranking algorithm enables split-
ting the generation task into subtasks in which subsets of 
the whole set of variations are generated simultaneously 
via generation algorithms in master-slave model of a mul-
tiprocessor system.

There is one-to-one relation between the group theo-
retic decomposition of permutations and a class of cellular 
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interconnection arrays built of two-permuters [14]. By us-
ing analogy with hardware generators of n-permutations, 
(n, k)-combinations, at most n-element partitions of n-
element set and derangements [8–10], we propose a hard-
ware implementation of (n, m)-permutation generation al-
gorithm with the help of a complex parallel counter and a 
cellular interconnection network.

2. Representation of (n, m)-permutations

In this section we introduce representations of the 
considered combinatorial objects by means of integer se-
quences (codewords) called choice functions of indexed 
families of sets.

Let < Ai >i∈I denote an indexed family of sets Ai = A, 
where: A = {1, . . . , n}, I = {1, . . . , m}, 1 ≤ m ≤ n. Any 
mapping f which “chooses” one element from each 
set A1, . . . , Am is called a choice function (or a sys-
tem of representatives, or a transversal) of the family 
< Ai >i∈I . If for every i �= j, i, j ∈ I , a supplementary
condition: ai �= a j is satisfied then any choice function 
ψ =< ai >i∈I that belongs to the indexed family < Ai >i∈I
is called (n, m)-permutation of the set A. Set of all such 
choice functions represents the set of all m-element vari-
ations without repetitions of n-element set. If n = m then 
(n, m)-permutations become equivalent to n-permutations 
of the set A.

Let us denote any permutation π of n-element set 
A = {1, . . . , n} by the sequence < π(1), π(2), . . . , π(n) >. 
The set of all n! permutations of A is called the symmetric 
group Sn .

Theorem 1. Let 1 ≤ m ≤ n, J = {n − m + 1, . . . , n} and <
Ui >i∈ J be indexed family of sets, where Ui = {0, . . . , i − 1}. 
Any choice function υ =< ui >i∈ J , that belongs to Carthesian 
product ×i∈ J U i represents an (n, m)-permutation ψ of A.

Proof. In the proof of the above theorem a decomposition 
of the symmetric group Sn on the finite set A = {1, . . . , n}
into left cosets of Sn−1 in Sn is referred to after [6]:

Sn = τ 0
n Sn−1 + τ 1

n Sn−1 + · · · + τn−1
n Sn−1 (1)

where + denotes the union of disjoint sets and τ j
i denotes 

the transposition (i j) (in particular τ 0
i is the identity per-

mutation).
The iterative decomposition of Sn into left cosets result-

ing from the equation (1), for 1 ≤ m ≤ n, is given below:

Sn = τ 0
n Sn−1 + τ 1

n Sn−1 + · · · + τn−1
n Sn−1

Sn−1 = τ 0
n−1 Sn−2 + τ 1

n−1 Sn−2 + · · · + τn−2
n−1 Sn−2

........................................................................

Sn−m+2 = τ 0
n−m+2 Sn−m+1 + τ 1

n−m+2 Sn−m+1 + · · · + τn−m+1
n−m+2 Sn−m+1

Sn−m+1 = τ 0
n−m+1 Sn−m + τ 1

n−m+1 Sn−m + · · · + τn−m
n−m+1 Sn−m .

(2)

Any set Ui = {τ 0
i , . . . , τ j

i , . . . , τ i−1
i }, for i ∈ J = {n − m +

1, . . . , n} is a system of representatives of left cosets and is 
called the m-level left transversal of Si in Si−1.

Moreover, |Ui | = i and Uk ∩ Ul = ∅, for every k �= l, 
k, l ∈ J .

By substituting τ j
i = j, we receive: Ui = {0, . . . , i − 1}. 

Any choice function υ =< ui >i∈ J belonging to Carthesian 

product ×i∈ J U i corresponds to the sequence ψ ′ =< ψ ′(n −
i + 1), . . . , ψ ′(n) >.

The integer sequence ψ ′ that represents set variations 
is obtained by performing on the elements of the set 
{1, . . . , n} the transposition sequence τ un

n , . . . , τ un−m+1
n−m+1 , ac-

cording to the decomposition scheme (2). The elements τ 0
i

that denote the identity transposition may be omitted.
The sequence ψ is obtained from the sequence ψ ′ by 

formula: ψ(i) = ψ ′(n − m + i), where: 1 ≤ i ≤ m. �
Conversion of choice function ψ into choice func-

tion υ for m = n can be performed using new algorithm 
CONVERSION given below. It is an iterative version of the 
recursive algorithm KLWFACTOR [14]. For the sake of read-
ability a generalized algorithm for the case when m �= n is 
omitted in this paper.

Algorithm CONVERSION
Input: n – variation parameter, V [n] – the integer table 
with choice functions ψ .
Output: Integer table U [n] with the choice function υ .
Method: The conversion method is based on determining 
consecutive left coset leaders (transpositions) whose se-
quence constitutes the unique control sequence υ for ψ . 
An auxiliary table Y [n] is used for storing the choice func-
tion ψ−1.

1. i:=n;
2. while i �= 1 do
3. U[i]:= V[i] mod i;
4. Y[U[i]]:= Y[i];
5. V[Y[U[i]]:= V[Y[i]];
6. Dec(i);
7. U[1]:=0;

The algorithm CONVERSION has the time complexity 
O (n). Exemplary sequences ψ and υ for n = m are shown 
in the last two columns of Table 1.

The number of variations of exactly m distinct elements 
from n elements, 1 ≤ m ≤ n equals V (n, m) = n!/(n − m)!.

The total number of variations of at most n distinct 
elements (ordered m-tuples) from n-element set, equals 
V (n) = ∑n

m=1 V (n, m).
It is known [13] that V (n) = n(V (n − 1) + 1), V (0) = 0.
The asymptotically tight bound on V (n) is �(n!), and 

2n! ≤ V (n) ≤ 3n!, for n ≥ 2.

3. The generation algorithms

Generation of (n, m)-permutation is based on “factorial 
counting”. In [17] the author pointed out that all permuta-
tion generation algorithms, despite of their particular con-
struction, reveal a common control structure. In the algo-
rithm VARGEN the control sequence representing variations 
is produced in lexicographic order. Then, the control se-
quence υ is converted into the output sequences ψ in a 
new linear order.

Algorithm VARGEN
Input: n, m – variation parameters, U [m] – the integer table 
with choice functions υ .
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