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New algorithms are proposed for generation of (n,m)-permutations, 1 < m < n. The
representation of (n, m)-permutations is derived from m-level iterative decomposition of
symmetric permutation group S, into cosets. The control sequence produced by the
generation algorithms appears in lexicographic order while the output sequence is obtained
from the control sequence in a linear order. Ranking and unranking schemes for control

sequences are given. An implementation of a hardware generator of (n, m)-permutations
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by means of a cellular interconnection network is described.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Combinatorial generation, enumeration and search are
among basic problems in computer science [7,11,16]. In
many application areas various classes of combinatorial ob-
jects are involved as test or problem instances. Numerous
generation algorithms have been designed for such com-
binatorial objects like combinations, compositions, permu-
tations, derangements, variations, partitions, graphs, trees
etc. in various representations.

In this paper we consider generation of (n, m)-permu-
tations, 1 <m <n, which will be called here equivalently
variations without repetitions, or variations.

A simple algorithm for variation generation consists of
(n, m)-combination generation followed by permutation of
m-subsets. In this case ranking of variations involves dou-
ble indexing: by the combination index and the permuta-
tion index. However, for applications that require splitting
the object set for a balanced generation and uniform in-
dexing, two-phase generation and double-index ranking is
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not acceptable and more versatile algorithms for variations
have to be invented.

Combinatorial properties of variations and variations
with repetitions are explained in [11,16]. Sequential and
parallel algorithms in various models of computations
were developed [1,2,4,5,12,15,18]. Ranking and unranking
schemes for variations without repetitions are given in [3].

In the present paper the representation of variations is
derived from a representation of permutations in an iter-
ative decomposition of symmetric permutation group S,
into left cosets [14]. Algorithms for generation of (n,m)-
permutations in a linear order are constructed. The con-
trol sequences are produced in O(m) time per generated
object. The output sequences are then obtained from the
control sequences in O (m) time.

Ranking and unranking algorithms for (n, m)-permuta-
tions are also given. The unranking algorithm enables split-
ting the generation task into subtasks in which subsets of
the whole set of variations are generated simultaneously
via generation algorithms in master-slave model of a mul-
tiprocessor system.

There is one-to-one relation between the group theo-
retic decomposition of permutations and a class of cellular
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interconnection arrays built of two-permuters [14]. By us-
ing analogy with hardware generators of n-permutations,
(n, k)-combinations, at most n-element partitions of n-
element set and derangements [8-10], we propose a hard-
ware implementation of (n, m)-permutation generation al-
gorithm with the help of a complex parallel counter and a
cellular interconnection network.

2. Representation of (n, m)-permutations

In this section we introduce representations of the
considered combinatorial objects by means of integer se-
quences (codewords) called choice functions of indexed
families of sets.

Let < A;j >jc; denote an indexed family of sets A; = A,
where: A={1,...,n}, I ={1,...,m}, 1 <m <n. Any
mapping f which “chooses” one element from each
set Aq,...,An is called a choice function (or a sys-
tem of representatives, or a transversal) of the family
< Aj >jc. If for every i # j, i,j € I, a supplementary
condition: a; # a;j is satisfied then any choice function
¥ =< a; >j¢; that belongs to the indexed family < A; >j¢;
is called (n, m)-permutation of the set A. Set of all such
choice functions represents the set of all m-element vari-
ations without repetitions of n-element set. If n =m then
(n, m)-permutations become equivalent to n-permutations
of the set A.

Let us denote any permutation 7 of n-element set
A=1{1,...,n} by the sequence < 7 (1),7(2),...,7w(N) >.
The set of all n! permutations of A is called the symmetric
group Sj.

Theorem 1.Let 1 <m<n, J[=n—-m+1,...,n} and <
Ui >iej be indexed family of sets, where U; = {0, ...,i — 1}.
Any choice function v =< u; >j¢j, that belongs to Carthesian
product x e jU; represents an (n, m)-permutation v of A.

Proof. In the proof of the above theorem a decomposition
of the symmetric group S, on the finite set A={1,...,n}
into left cosets of S,_1 in Sy, is referred to after [6]:

Snzfr?sn—]+Tr}Sn—1+"'+T,Z,1_15n—l (1)

where + denotes the union of disjoint sets and Ti] denotes
the transposition (ij) (in particular ‘L',-O is the identity per-
mutation).

The iterative decomposition of S, into left cosets result-
ing from the equation (1), for 1 <m <n, is given below:

Sp= Tr?sn—l + Tn] Sp—1+---+ T,;l_lsn—l

-2
Sno1 =T Sn2+ T} Sn2 -+ T I Sn2

0 1 n—m+1
Sn—m42 = Th—m+2 Sn—m+1 + Th—m+2 Sn—m+1+ -+ T 0o Sn—m1

— 70 1 . n-m
Sn—m+1 = Ty_mi1Sn—m + Ty_pmyq Sn—m + -+ T 00 Snm.

Any set Ui ={t0,...,7},...,7/ "}, forie J={n—m+
1,...,n} is a system of representatives of left cosets and is
called the m-level left transversal of S; in S;_1.

Moreover, |U;j| =i and U, N U; = @, for every k #1,
k,le ]. .

By substituting ‘L'l-] = j, we receive: U; =1{0,...,i —1}.
Any choice function v =< u; >j¢; belonging to Carthesian

product x;e;U; corresponds to the sequence ' =< y'(n—
i+1),...,¢9'()>.

The integer sequence ¥’ that represents set variations
is obtained by performing on the elements of the set
{1,...,n} the transposition sequence f#”,...,r:j’mmj]l, ac-
cording to the decomposition scheme (2). The elements rio
that denote the identity transposition may be omitted.

The sequence v is obtained from the sequence v’ by
formula: ¥ (i) =y¥'(n —m+1i), where: 1<i<m. O

Conversion of choice function ¥ into choice func-
tion v for m =n can be performed using new algorithm
CONVERSION given below. It is an iterative version of the
recursive algorithm KLWFACTOR [14]. For the sake of read-
ability a generalized algorithm for the case when m #n is
omitted in this paper.

Algorithm CONVERSION

Input: n - variation parameter, V[n] - the integer table
with choice functions .

Output: Integer table U[n] with the choice function v.
Method: The conversion method is based on determining
consecutive left coset leaders (transpositions) whose se-
quence constitutes the unique control sequence v for .
An auxiliary table Y[n] is used for storing the choice func-
tion ¥~ 1.

1. i:=n;

2. while i # 1 do
Uli]:= V[i] mod i;
4. Y[U[i]]:= Y[i];

5. V[Y[U[i]]:= VIY[i]];
6
7.

W

Dec(i);
U[1]:=0;

The algorithm CONVERSION has the time complexity
0 (n). Exemplary sequences v and v for n =m are shown
in the last two columns of Table 1.

The number of variations of exactly m distinct elements
from n elements, 1 <m <n equals V(n,m) =n!/(n —m)!.

The total number of variations of at most n distinct
elements (ordered m-tuples) from n-element set, equals
Vi) =3 n_ Vn,m).

It is known [13] that V(n)=n(V(n—1) + 1), V(0) =0.

The asymptotically tight bound on V(n) is ®(n!), and
2n! < V(n) <3n!, for n> 2.

3. The generation algorithms

Generation of (n, m)-permutation is based on “factorial
counting”. In [17] the author pointed out that all permuta-
tion generation algorithms, despite of their particular con-
struction, reveal a common control structure. In the algo-
rithm VARGEN the control sequence representing variations
is produced in lexicographic order. Then, the control se-
quence v is converted into the output sequences ¥ in a
new linear order.

Algorithm VARGEN
Input: n, m - variation parameters, U[m] - the integer table
with choice functions v.



Download English Version:

https://daneshyari.com/en/article/4950877

Download Persian Version:

https://daneshyari.com/article/4950877

Daneshyari.com


https://daneshyari.com/en/article/4950877
https://daneshyari.com/article/4950877
https://daneshyari.com

