
Information Processing Letters 122 (2017) 8–16

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On minimising the maximum expected verification time

Toni Mancini, Federico Mari, Annalisa Massini ∗, Igor Melatti, Ivano Salvo, 
Enrico Tronci ∗

Computer Science Department, Sapienza University of Rome, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 February 2016
Received in revised form 2 November 2016
Accepted 1 February 2017
Available online 4 February 2017
Communicated by Krishnendu Chatterjee

Keywords:
Formal verification
Explicit model checking
System-level formal verification
Formal methods
Software engineering

Cyber Physical Systems (CPSs) consist of hardware and software components. To verify 
that the whole (i.e., software + hardware) system meets the given specifications, exhaustive
simulation-based approaches (Hardware In the Loop Simulation, HILS) can be effectively 
used by first generating all relevant simulation scenarios (i.e., sequences of disturbances) 
and then actually simulating all of them (verification phase). When considering the whole 
verification activity, we see that the above mentioned verification phase is repeated 
until no error is found. Accordingly, in order to minimise the time taken by the whole 
verification activity, in each verification phase we should, ideally, start by simulating 
scenarios witnessing errors (counterexamples). Of course, to know beforehand the set of 
such scenarios is not feasible. In this paper we show how to select scenarios so as to 
minimise the Worst Case Expected Verification Time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A CPS consists of hardware (e.g., engines, electrical cir-
cuits, etc.) and software components. Thus, in order to 
verify a CPS design, we need methods and tools that can 
model and effectively support analysis of hardware as well 
as software components.

From a formal point of view, CPS can be modelled as 
hybrid systems (see, e.g., [8,32,31] and citations thereof). 
Many Model-Based Design software tools offer support for 
modelling and simulation of CPSs. Well known examples 
are Simulink, VisSim, Open Modelica, JModelica, Dymola. 
All such tools take as input a (mathematical) model of the 
behaviour of the CPS along with a simulation scenario and 
provide as output the time evolution (trace or simulation 
run) of the system.

System Level Verification of CPSs aims at verifying that 
the whole (i.e., software + hardware) system meets the 

* Corresponding authors.
E-mail address: massini@di.uniroma1.it (A. Massini).

given specifications. System Level Formal Verification (SLFV)
has the goal of exhaustively verifying that the above holds 
for all possible operational scenarios.

For digital circuits, formal verification is usually car-
ried out using symbolic model checking techniques (see, 
e.g., [13,12]). Unfortunately, model checkers for hybrid sys-
tems cannot handle SLFV of real world CPSs because of 
state explosion. Thus, HILS is currently the main workhorse 
for system-level verification of CPSs, and is supported by 
model-based design tools.

In HILS, the control software (see, e.g., [30,4,5]) reads/
sends values from/to mathematical models (simulation) of 
the physical systems (e.g., mechanical or electrical sys-
tems) it will be interacting with. Simulation can be very 
time consuming. Accordingly, in order to reduce sys-
tem design time, there are tools providing modelling and 
simulation software along with FPGA-based hardware to 
support real-time simulation. Examples are Opal-RT and 
dSpace.

Finally, model-based design of CPSs often refers to the 
activity of synthesising control software from system re-

http://dx.doi.org/10.1016/j.ipl.2017.02.001
0020-0190/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2017.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:massini@di.uniroma1.it
http://dx.doi.org/10.1016/j.ipl.2017.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.02.001&domain=pdf


T. Mancini et al. / Information Processing Letters 122 (2017) 8–16 9

quirements (see, e.g., [7,6] and citations thereof). Here, 
instead, we assume that a model for the whole system 
(software + hardware) is given, and we are only interested 
in CPS SLFV.

1.1. Motivations

Simulation-based approaches to the analysis of hybrid 
systems have been proven very effective in application do-
mains as diverse as CPSs (see, e.g., [24,28,17,11,41,1,42]), 
smart grids (see, e.g., [40,29,20]) and biological systems 
(see, e.g., [22,38]). The goal of all such approaches is to 
show that, notwithstanding the possible presence of dis-
turbances (i.e., uncontrollable events such as faults, vari-
ations in system parameters, etc.) from the environment, 
the system meets its requirements. This is done by using 
HILS to show that for all simulation scenarios (i.e., time se-
quences of disturbances) in a given set, the system meets 
its requirements. HILS, in turn, is carried out using a sim-
ulator (e.g., Simulink, Open Modelica, JModelica, Dymola) 
able to model and simulate both hardware (e.g., mechani-
cal or electrical systems) as well as software components. 
Simulation-based verification can be carried out using two 
approaches: online and offline. The online approach typi-
cally selects the next disturbance to be simulated using a 
Monte Carlo strategy. The verification activity then consists 
of a sequence of disturbance generation and simulation 
steps. The offline approach first generates the whole (or-
dered) set of scenarios to be simulated (scenario generation 
phase) and then simulates all of them (verification phase).

The verification activity simulates the SUV until either a 
scenario (counterexample) whose simulation returns FAIL is 
found, or all scenarios have been simulated and simulation 
returns PASS. If the verification activity returns FAIL, then 
the SUV design is revised, by exploiting the counterexam-
ple, and a new verification activity is performed. We note 
the following points.

First, with an offline approach to CPS verification, more 
than 99% of the overall verification time is spent in the 
verification phase (see, e.g., [24]). Namely, for CPSs, sim-
ulating a single scenario may take from several seconds 
to several minutes (see, e.g., [24,26,28]) depending on the 
complexity of the system model (since typically a system 
of ordinary differential equations has to be solved in or-
der to simulate the SUV dynamics). For example, for the 
SUV considered in [24], we see that generating a simula-
tion scenario takes on average 0.45 ms (thus generating 
4 million simulation scenarios takes about 30 minutes), 
whereas the Simulink simulation of a single scenario takes 
on average about 16.8 seconds (and the sequential simula-
tion of all scenarios would take more than 700 days!). This 
is in contrast with, e.g., digital hardware simulation, where 
the time needed to generate a scenario and to simulate it 
are comparable. Accordingly, within an offline framework, 
we can afford to increase (e.g., doubling) the time spent in 
the generation phase if that can decrease (even slightly) 
the expected time for the verification phase. Note how-
ever that the offline approach makes sense only for CPSs, 
whereas the online approach can always be used and is in-
deed the approach always used in digital hardware as well 
as in software verification.

Second, whenever an error is found (and the SUV re-
vised accordingly), the verification activity needs to simu-
late again all scenarios, including those already been sim-
ulated in previous verification activities (since revising the 
SUV design may have introduced new errors).

Third, in the offline approach, the scenario generation 
phase is performed only once, at the beginning of the ver-
ification activity. This is possible because the scenario gen-
eration phase depends only on the environment the SUV 
will be interacting with, and not on the SUV model it-
self. Thus, revising the SUV design, after an error has been 
found, does not change the set of simulation scenarios to 
be considered in the verification phase.

From the above points, it follows that simulating sce-
narios preceding a counterexample is indeed a waste of 
time, since those scenarios will have to be simulated again 
anyway. In order to minimise such a waste of time, one 
would like to order the simulation scenarios in such a way 
that those witnessing errors (counterexamples) are simu-
lated at the very beginning in each verification phase. Of 
course, to know beforehand the set of counterexamples is 
not feasible (it is indeed the purpose of the verification ac-
tivity). Furthermore, while reordering of the set of scenar-
ios to be simulated can be effectively done within an offline
framework (and has been done indeed in [25,28]), this is 
not possible within an online framework where SUV simu-
lation starts before the whole set of scenarios is known. 
Indeed, from [10] we see that no strategy to select the 
next disturbance in an online strategy can be optimal for 
all SUVs.

The above considerations motivate investigation on ef-
fective algorithms that can order the set of simulation sce-
narios so as to minimise the worst case expected time for 
the verification activity within an offline CPS verification 
approach.

Of course our techniques could be applied to simul-
ation-based verification of any system (be it software or 
hardware) with a finite set of scenarios. However, from a 
practical point of view, it only makes sense when scenario 
generation takes much less than scenario simulation (see 
discussion above). Presently, to the best of our knowledge, 
this is only the case for CPSs and this is why we focus on 
them.

1.2. Main contributions

From the previous discussion we see that the com-
putation time (defined as the number of scenarios to be 
simulated before hitting a counterexample, if any) of a ver-
ification phase (off-line approach) depends on the order in 
which scenarios are simulated and on where in such an or-
der counterexamples are.

Accordingly, the generic verification phase (also simply 
called verification in the following) can be modelled as a 
two-player zero-sum game as follows. First, player 1 (ver-
ifier) chooses the (possibly probabilistic) ordering strategy 
in which scenarios will be simulated. Second, player 2 (ad-
versary) chooses which scenarios will be counterexamples 
(that is, will witness an error). Finally, the verifier simu-
lates the scenarios in the chosen order.



Download	English	Version:

https://daneshyari.com/en/article/4950890

Download	Persian	Version:

https://daneshyari.com/article/4950890

Daneshyari.com

https://daneshyari.com/en/article/4950890
https://daneshyari.com/article/4950890
https://daneshyari.com/

