
Information Processing Letters 122 (2017) 30–33

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Some bounds on the generalised total chromatic number of 

degenerate graphs

Izak Broere a, Gabriel Semanišin b,∗
a Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa
b Institute of Computer Science, Faculty of Science, P.J. Šafárik University, Košice, Slovakia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 February 2015
Received in revised form 1 December 2016
Accepted 25 February 2017
Available online 3 March 2017
Communicated by R. Uehara

Keywords:
Combinatorial problems
Total colouring number
Graph property
k-Degenerate graph

The total generalised colourings considered in this paper are colourings of the vertices and 
of the edges of graphs satisfying the following conditions:

• each set of vertices of the graph which receive the same colour induces an 
m-degenerate graph,

• each set of edges of the graph which receive the same colour induces an n-degenerate 
graph, and

• incident elements receive different colours.

Bounds for the least number of colours with which this can be done for all k-degenerate 
graphs are obtained.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For graphs in general, we use the notation and termi-
nology of [4]; for concepts related to (hereditary) graph 
properties we use the notation and terminology of [1]. Two 
particular graph properties to be used in the sequel are O
and O1, where O = {G ∈ I : G is edgeless, i.e., E(G) = ∅}
and Ok = {G ∈ I : each component of G has at most k + 1
vertices} and I is the set of all graphs.

A graph G is called k-degenerate if the minimum de-
gree δ(H) ≤ k for each induced subgraph H of G . The set 
of all k-degenerate graphs will be denoted by Dk; it is 
a well-known additive induced hereditary graph property. 
k-degenerate graphs were introduced in [8] and they play 
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an important role in the structure of hereditary properties 
of graphs (see e.g. [9,10]).

Let P and Q be graph properties and let C = {1, . . . , d}. 
If G = (V , E) is a graph, then a function c : V ∪ E → C is a 
total (P, Q)-colouring of G in d colours if

(1) G[{c−1(i)} ∩ V ] ∈P , for all i ∈ C ,
(2) G[{c−1(i)} ∩ E] ∈Q, for all i ∈ C ,
(3) if e = vu ∈ E (with v, u ∈ V ), then c(v) 	= c(e) and 

c(u) 	= c(e), i.e., no vertex receives the same colour as 
any edge incident to it.

The minimum number of colours needed in a total (P, Q)-
colouring of G is called the total (P, Q)-chromatic number
and is denoted by χ ′′

P,Q(G) (see [2]). Clearly, when P =O
and Q =O1, a total (P, Q)-colouring of a graph G is noth-
ing but a total colouring of G so that χ ′′

O,O1
(G) = χ ′′(G). 

This parameter is studied in [7] where it is shown that 
an s-degenerate graph has a total colouring with � + 1
colours if the maximum degree � is sufficiently large.
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2. Motivation

To know the minimum number, or at least a bound 
for the minimum number of colours needed in a total 
(P, Q)-colouring of a graph G , implies that we know in 
how many parts we can partition the vertices and the 
edges of the graph separately while imposing a restriction 
on the structure of each of these parts. In fact, we impose 
restrictions on the subgraph induced by each vertex part 
(by choosing a suitable P) which are independent of the 
restrictions posed on the subgraph induced by each edge 
part (by choosing a suitable Q). We shall now describe a 
possible application of this type of partition problem for 
networks which can be represented as graphs.

The theory of wireless sensor networks has become im-
portant in our modern day and age – see [3] for example. 
This is due to its many potential applications in process 
management, health care, environmental sensing, etc. Fur-
thermore, this theory has interesting challenging theoreti-
cal problems.

A wireless sensor network (WSN) differs from a com-
puter network in that it has limited capabilities of the sen-
sors which could be caused by low energy sources or low 
computational capacity. Pairs of sensors typically commu-
nicate through designated channels. Because of potential 
collisions and interferences and a limited capability of the 
sensor involved, the number of communication channels 
linked to one sensor may be limited. In order to secure the 
communication sent through this network one can assign 
certificates to sensors. Again, due to limited computational 
capacity, it is only possible to use a fixed, but limited, 
number of certificates. On the other hand, the commu-
nication will be safer, if the same certificate is not used 
repeatedly. Such a network may therefore fail to function 
far away from maintenance engineers, deep under the sea 
or in outer space for example, if the limitation specifica-
tions imposed in its design are not strict enough for it to 
handle its task. It is therefore a reasonable option to struc-
ture its design in such a way that some parts of the WSN 
may still function optimally in such a situation. This option 
calls for labellings of the sensors and the communication 
channels during the design phase of the WSN in such a 
way that the subnetworks determined by sets of equally 
labelled sensors and equally labelled communication chan-
nels have suitable structural limitations to make parts of 
the network still functional.

This situation corresponds to a great extent to the prob-
lem we study in this paper: Think about the network as 
the graph G having as vertex set V the set of sensors and 
as edge set E the set of its communication channels. The 
limited number of communication channels linking one 
sensor to others may then be translated into a degree re-
striction for the vertices of the graph linking it to the graph 
G being k-degenerate for a suitable choice of k.

By determining for such a graph G its total (Dm, Dn)-
chromatic number χ ′′

Dm,Dn
(G), one obtains information on 

how many subnetworks of a similar kind, which could en-
sure that such subnetworks remain functional in case of a 
failure of the WSN, are needed. Condition (3) in the defini-
tion of a total (P, Q)-colouring of a graph is perhaps not 
applicable to this situation. However, any upper bound on 

the number of colours needed can only be improved on by 
relaxing this condition.

Our particular choice of degree restrictions of the ver-
tices of the subnetworks ensures stricter restrictions on its 
structural design. It was shown in [6] that WSN with de-
generate topologies possesses specific properties that are 
very important for communication protocol design.

In this paper we then study, for positive integers m, n
and k, the total (Dm, Dn)-chromatic number χ ′′

Dm,Dn
(G) of 

a graph G with G ∈Dk .

3. The total colouring of degenerate graphs

In our first result we give an upper bound for
χ ′′
Dm,Dn

(G) for a graph G ∈Dk .

Theorem 1. For every three positive integers m, n and k and for 
every G ∈Dk we have χ ′′

Dm,Dn
(G) ≤ max

{⌈
k+1
m+1

⌉
,
⌈

k
n

⌉
+ 2

}
.

Proof. Consider any three positive integers m, n and k. 
We denote, for convenience, the number max

{⌈
k+1
m+1

⌉
,⌈

k
n

⌉
+ 2

}
by x. The proof is by induction over the num-

ber of vertices of G . If G has only one vertex, the result 
holds since then χ ′′

Dm,Dn
(G) = 1 while x ≥ 3 for all posi-

tive integers m, n and k.
Hence suppose the result holds for all k-degenerate 

graphs of order at most p − 1 and let G be one of order p. 
Then G has a vertex of degree at most k; suppose v is such 
a vertex. Since G −v is also k-degenerate, the induction hy-
pothesis assures us that χ ′′

Dm,Dn
(G − v) ≤ x. Consider a to-

tal (Dm, Dn) colouring of G − v using x colours, which we 
will denote by 1, 2, . . . , x, and let, W1, W2, . . . , W x be the 
colour classes into which the subset of V (G − v) consist-
ing of those vertices which are adjacent to v is partitioned 
by this colouring of the vertices of G − v .

We claim that at least one set W i then contains at 
most m vertices. This is so since x ≥

⌈
k+1
m+1

⌉
and hence 

x ≥ k+1
m+1 , i.e., x(m + 1) ≥ k + 1. Hence, if each W i con-

tains at least m + 1 vertices, then the degree of v is 
| ⋃ j W j |≥ x(m + 1) ≥ k + 1 which contradicts the fact that 
the degree of v is at most k.

Therefore at least one of the W i ’s, say W x , contains at 
most m vertices: we can therefore colour v with x to com-
plete the colouring of the vertices of G with x colours such 
that each colour class of vertices induces an m-degenerate 
graph as required.

In order to colour the edges incident to v without vi-
olating the incidence condition, each of the k edges in-
cident to v must be coloured by a colour different from 
the colours of its endvertices; we shall call such a colour 
admissible at the edge. This means that we have x − 2 pos-
sibilities for each edge incident to a vertex with colour 
different from x and x − 1 possibilities for each edge of 
which both endvertices are coloured by x.

We shall show that we can assign colours to the edges 
incident to v is such a way that:
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