
Information Processing Letters 120 (2017) 6–10

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Notes on a hierarchical scheduling problem on identical
machines ✩

Cheng He ∗, Hao Lin

School of Science, Henan University of Technology, Zhengzhou, Henan 450052, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 September 2015
Received in revised form 23 February 2016
Accepted 8 December 2016
Available online 21 December 2016
Communicated by Nathan Fisher

Keywords:
Hierarchical scheduling
Identical machines
Total flowtime
Worst-case ratio
Approximation algorithms

For the hierarchical scheduling problem on identical machines to minimize the maximum
T-time of all machines under the condition that the total completion time of all jobs
is minimum, where the T-time of a machine is defined as the total completion time of
jobs scheduled on the machine, it is NP-hard if the number of the machines is fixed, and
strongly NP-hard otherwise. When the number of the machines is fixed, a forward dynamic
programming algorithm and a fully polynomial-time approximation scheme (FPTAS) have
been presented in a literature. In the literature, it is showed that the worst-case ratio of
the classical algorithm SPT is at most 11

6 and at least 5
3 . In this paper, we give an improved

worst-case ratio, which is at most 9
5 and at least 7

4 , of the algorithm. Another algorithm,
whose worst-case ratio is at most 7

6 and at least 35
33 , is provided for the two-machine case.

On the other hand, we present a backward dynamic programming algorithm and an FPTAS
with the better time complexities.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There are n jobs J1, J2, . . . , Jn , with processing times
p1, p2, . . . , pn , to be processed on m identical machines
M1, M2, . . . , Mm without preemption. A feasible schedule is
a schedule that non-preemptively process the jobs on the
machines. Let σ = (π1, π2, . . . , πm) be a schedule of the
problem, πi is the sequence of jobs in machine Mi (1 ≤
i ≤ m). Denote by C j(πi) the completion time of job J j
on machine Mi . Then the flowtime of machine Mi is ∑

j∈πi
C j(πi). From this, two objective functions consid-

ered in this paper are the total flowtime

∑
C j(σ) :=

∑

1≤i≤m

∑

j∈πi

C j(πi)

✩ This work was supported by NSFC (11201121, 11571323) and NSFST-
DOHN (162300410221).

* Corresponding author.
E-mail address: hech202@163.com (C. He).

and the maximum flowtime

(
∑

C j(σ))max := max
1≤i≤m

∑

j∈πi

C j(πi).

The makespan of σ is Cmax(σ) = max1≤i≤m, j∈πi C j(πi).
In the paper, we focus on the hierarchical scheduling

problem on m identical machines to minimize the max-
imum flowtime under the condition that the total flow-
time is minimum, denoted by Pm||Lex(

∑
C j, (

∑
C j)max)

(called as problem P for short) following the three-field
notation of [5]. When m is a part of input, the problem
is denoted by P ||Lex(

∑
C j, (

∑
C j)max) (called as problem

P′ for short). [1] showed that the problem Pm||(∑ C j)max
is NP-hard and the worst-case ratio of algorithm SPT for
the problem is at most 3 − 3

m + 1
m2 , and so at most 3

for P ||(∑ C j)max. [6] proved that P ||(∑ C j)max is strongly
NP-hard and the worst-case ratio of algorithm SPT for the
problem is at most 2.608. [7] presented the following re-
sults for problem P and problem P′ .

http://dx.doi.org/10.1016/j.ipl.2016.12.001
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:hech202@163.com
http://dx.doi.org/10.1016/j.ipl.2016.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.12.001&domain=pdf

C. He, H. Lin / Information Processing Letters 120 (2017) 6–10 7

(1) Problem P is NP-hard and Problem P′ is strongly NP-
hard.

(2) The worst-case ratio of algorithm SPT for problem
P′ is at most 11

6 and at least 5
3 .

(3) The worst-case ratio of algorithm RSPT for problem
P′ is at most 3

2 and at least 11
9 .

(4) An O (m! · nm+1 · P 2m
s)-time forward dynamic pro-

gramming algorithm and an FPTAS with O (m! · nm+1 ·
(

(mn+ε)n
ε)2m) time for problem P, where P s = ∑n

j=1 p j .
In the present paper, we improved the worst-case ratio of
algorithm SPT for problem P′ such that its upper bound
and lower bound are 9

5 and 7
4 , respectively. For m = 2, we

present a better algorithm called Algorithm DLPT and de-
duce that its worst-case ratio is at most 7

6 and at least
35
33 . Moreover, we present an O (m! · nm+1 · Pm

s)-time back-
ward dynamic programming algorithm and an FPTAS with
O (m!·n2m+1

εm) time for problem P.
The paper is organized as follows. An improved worst-

case ratio of Algorithm SPT is discussed in Section 2. In
Section 3, we present a backward dynamic programming
algorithm and an FPTAS for problem P. In Section 4, an-
other algorithm, called Algorithm DLPT, is provided for
m = 2. We deduce that the worst-case ratio of Algo-
rithm DLPT is at most 7

6 and at least 35
33 .

2. Algorithm SPT

Recall that we have n jobs and m machines. We may
assume that n = km for some positive integer k (otherwise
we may add some dummy jobs with processing time 0 and
the dummy jobs are scheduled first on the machines with-
out affecting the two objectives in any schedule). With-
out loss of generality, we assume that p1 ≥ p2 ≥ · · · ≥ pn .
We partition job set J = { J1, J2, . . . , Jn} into k ranks,
where R j = { J (j−1)m+1, J (j−1)m+2, . . . , J (j−1)m+m} is the
j-th rank, j = 1, . . . , k.

Let π be the schedule obtained from schedule σ by
interchanging the positions of two jobs with the same pro-
cessing times. Then π is essentially the same as σ . So we
regard the schedules up to the permutations among the
jobs of the same processing times as the same schedules
throughout the paper. Suppose that the optimal value of
P || ∑ C j is T ∗ . Then P ||Lex(

∑
C j, (

∑
C j)max) ⇔ P | ∑ C j ≤

T ∗|(∑ C j)max.

Definition 2.1. A schedule σ is called Quasi-SPT (Q-SPT for
short) if σ satisfies the following three conditions.

• Each machine receives exactly one job from R j , j =
1, . . . , k.

• Jobs on each machine are scheduled in the non-
decreasing order of processing time.

• There is no idle time.

Lemma 2.2. ([2]) A schedule σ is Q-SPT if and only if σ is an
optimal schedule of problem P || ∑ C j .

Lemma 2.2 implies that solving the problem P | ∑ C j ≤
T ∗|(∑ C j)max equivalents to finding a Q-SPT optimal

schedule of P ||(∑ C j)max. Hence we confine our attention
on Q-SPT schedules in the following.

Let J (i) be the current job set of jobs assigned to Mi
and T Mi be the sum of processing times of jobs assigned
to Mi at present, i.e., T Mi = ∑

j∈J (i) p j .

Algorithm SPT.

Step 0: Let T Mi := 0, J (i) := ∅, i = 1, . . . , m and j := n.
Step 1: Let T Mi0 = min1≤i≤m{T Mi} (if a tie, then the min-

imum i0 first and Mi0 is different from the last ma-
chine that is chosen to schedule job). Let J (i0) :=
J (i0)

⋃{ J j} and T Mi0 := T Mi0 + p j and schedule job
J j at the end of current schedule on Mi0 .

Step 2: If j > 1, then let j := j − 1 and go back to Step 1.
Otherwise stop.

Lemma 2.3. The schedule derived by Algorithm SPT is a Q-SPT
schedule.

Proof. Obviously, the m jobs Jn, Jn−1, . . . , Jn−m+1, i.e.,
Jkm, Jkm−1, . . . , J (k−1)m+1 (for n = km) in Rk are sched-
uled first on M1, M2, . . . , Mm , respectively, by Algorithm
SPT. Then by Algorithm SPT, we have

Claim 1. Job Jlm−i in Rl is scheduled on Mi+1 for 1 ≤ l ≤ k and
0 ≤ i ≤ m − 1.

Proof of Claim 1. Algorithm SPT shows that the jobs in
Rk, Rk−1, . . . , R1 are scheduled one by one. We prove
Claim 1 by induction on the number l of ranks in Rl . The
basic case, l = k, is obvious. Assuming that Claim 1 holds
for 2 ≤ l ≤ k − 1, we will show that it also holds for l = 1.

According to the assumption that Claim 1 holds for 2 ≤
l ≤ k − 1, we have T M1 ≤ T M2 ≤ . . . ≤ T Mm , just before
the jobs in R1 are scheduled, by p1 ≥ p2 ≥ · · · ≥ pn . From
Algorithm SPT, we have jobs Jm, Jm−1, . . . , J1 in R1 are
scheduled one by one. So job Jm in R1 is scheduled on M1
by Algorithm SPT. Further, at present T M1 + pm = pkm +
p(k−1)m + . . .+ pm ≥ pkm + p(k−1)m+1 + . . . + pm+1 = pkm +
T Mm ≥ T Mm ≥ T Mm−1 ≥ . . . ≥ T M2. Hence, next job Jm−1
in R1 is scheduled on M2 by Algorithm SPT. Similarly, we
may prove that Jm−2, Jm−3, . . . , J1 in R1 are scheduled on
M3, M4, . . . , Mm , respectively. Therefore Claim 1 also holds
for l = 1.

By Claim 1 and Algorithm SPT, the schedule derived by
Algorithm SPT is a Q-SPT schedule. �

So the schedule derived by Algorithm SPT is a feasi-
ble schedule for problem P | ∑ C j ≤ T ∗|(∑ C j)max. By a
more elaborate analysis on the upper bound of the worst-
case ratio of Algorithm SPT of [7], we receive better upper
bound and lower bound.

Theorem 2.4. The worst-case ratio of Algorithm SPT for the
problem P | ∑ C j ≤ T ∗|(∑ C j)max is at most 9

5 and at least 7
4 .

Proof. Without loss of generality, we may suppose that
k ≥ 4 by adding some dummy jobs with processing time

Download English Version:

https://daneshyari.com/en/article/4950900

Download Persian Version:

https://daneshyari.com/article/4950900

Daneshyari.com

https://daneshyari.com/en/article/4950900
https://daneshyari.com/article/4950900
https://daneshyari.com

