Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Notes on a hierarchical scheduling problem on identical machines ${}^{\bigstar}$

Cheng He*, Hao Lin

School of Science, Henan University of Technology, Zhengzhou, Henan 450052, China

ARTICLE INFO

Article history: Received 13 September 2015 Received in revised form 23 February 2016 Accepted 8 December 2016 Available online 21 December 2016 Communicated by Nathan Fisher

Keywords: Hierarchical scheduling Identical machines Total flowtime Worst-case ratio Approximation algorithms

ABSTRACT

For the hierarchical scheduling problem on identical machines to minimize the maximum T-time of all machines under the condition that the total completion time of all jobs is minimum, where the T-time of a machine is defined as the total completion time of jobs scheduled on the machine, it is NP-hard if the number of the machines is fixed, and strongly NP-hard otherwise. When the number of the machines is fixed, a forward dynamic programming algorithm and a fully polynomial-time approximation scheme (FPTAS) have been presented in a literature. In the literature, it is showed that the worst-case ratio of the classical algorithm SPT is at most $\frac{11}{6}$ and at least $\frac{5}{3}$. In this paper, we give an improved worst-case ratio is at most $\frac{9}{5}$ and at least $\frac{25}{33}$, is provided for the two-machine case. On the other hand, we present a backward dynamic programming algorithm and an FPTAS with the better time complexities.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There are *n* jobs $J_1, J_2, ..., J_n$, with processing times $p_1, p_2, ..., p_n$, to be processed on *m* identical machines $M_1, M_2, ..., M_m$ without preemption. A *feasible schedule* is a schedule that non-preemptively process the jobs on the machines. Let $\sigma = (\pi_1, \pi_2, ..., \pi_m)$ be a schedule of the problem, π_i is the sequence of jobs in machine M_i ($1 \le i \le m$). Denote by $C_j(\pi_i)$ the completion time of job J_j on machine M_i . Then the flowtime of machine M_i is $\sum_{j \in \pi_i} C_j(\pi_i)$. From this, two objective functions considered in this paper are the total flowtime

$$\sum C_j(\sigma) := \sum_{1 \le i \le m} \sum_{j \in \pi_i} C_j(\pi_i)$$

 * This work was supported by NSFC (11201121, 11571323) and NSFST-DOHN (162300410221).

* Corresponding author.

E-mail address: hech202@163.com (C. He).

http://dx.doi.org/10.1016/j.ipl.2016.12.001 0020-0190/© 2016 Elsevier B.V. All rights reserved. and the maximum flowtime

$$(\sum C_j(\sigma))_{\max} := \max_{1 \le i \le m} \sum_{j \in \pi_i} C_j(\pi_i).$$

The makespan of σ is $C_{\max}(\sigma) = \max_{1 \le i \le m, j \in \pi_i} C_j(\pi_i)$.

In the paper, we focus on the hierarchical scheduling problem on *m* identical machines to minimize the maximum flowtime under the condition that the total flowtime is minimum, denoted by $Pm||Lex(\sum C_j, (\sum C_j)_{max})$ (called as problem P for short) following the three-field notation of [5]. When *m* is a part of input, the problem is denoted by $P||Lex(\sum C_j, (\sum C_j)_{max})$ (called as problem P' for short). [1] showed that the problem $Pm||(\sum C_j)_{max}$ is NP-hard and the worst-case ratio of algorithm SPT for the problem is at most $3 - \frac{3}{m} + \frac{1}{m^2}$, and so at most 3 for $P||(\sum C_j)_{max}$. [6] proved that $P||(\sum C_j)_{max}$ is strongly NP-hard and the worst-case ratio of algorithm SPT for the problem is at most 2.608. [7] presented the following results for problem P and problem P'.

(1) Problem P is NP-hard and Problem P' is strongly NP-hard.

(2) The worst-case ratio of algorithm SPT for problem P' is at most $\frac{11}{6}$ and at least $\frac{5}{3}$.

(3) The worst-case ratio of algorithm RSPT for problem P' is at most $\frac{3}{2}$ and at least $\frac{11}{9}$.

(4) An $O(m! \cdot n^{m+1} \cdot P_s^{2m})$ -time forward dynamic programming algorithm and an FPTAS with $O(m! \cdot n^{m+1} \cdot (\frac{(mn+\epsilon)n}{\epsilon})^{2m})$ time for problem P, where $P_s = \sum_{j=1}^{n} p_j$. In the present paper, we improved the worst-case ratio of algorithm SPT for problem P' such that its upper bound and lower bound are $\frac{9}{5}$ and $\frac{7}{4}$, respectively. For m = 2, we present a better algorithm called Algorithm DLPT and deduce that its worst-case ratio is at most $\frac{7}{6}$ and at least $\frac{35}{33}$. Moreover, we present an $O(m! \cdot n^{m+1} \cdot P_s^m)$ -time backward dynamic programming algorithm and an FPTAS with $O(\frac{m! \cdot n^{2m+1}}{2})$ time for problem P.

The paper is organized as follows. An improved worstcase ratio of Algorithm SPT is discussed in Section 2. In Section 3, we present a backward dynamic programming algorithm and an FPTAS for problem P. In Section 4, another algorithm, called Algorithm DLPT, is provided for m = 2. We deduce that the worst-case ratio of Algorithm DLPT is at most $\frac{7}{6}$ and at least $\frac{35}{33}$.

2. Algorithm SPT

Recall that we have *n* jobs and *m* machines. We may assume that n = km for some positive integer *k* (otherwise we may add some dummy jobs with processing time 0 and the dummy jobs are scheduled first on the machines without affecting the two objectives in any schedule). Without loss of generality, we assume that $p_1 \ge p_2 \ge \cdots \ge p_n$. We partition job set $\mathcal{J} = \{J_1, J_2, \dots, J_n\}$ into *k* ranks, where $\mathcal{R}_j = \{J_{(j-1)m+1}, J_{(j-1)m+2}, \dots, J_{(j-1)m+m}\}$ is the *j*-th rank, $j = 1, \dots, k$.

Let π be the schedule obtained from schedule σ by interchanging the positions of two jobs with the same processing times. Then π is essentially the same as σ . So we regard the schedules up to the permutations among the jobs of the same processing times as the same schedules throughout the paper. Suppose that the optimal value of $P||\sum C_j$ is T^* . Then $P||Lex(\sum C_j, (\sum C_j)_{max}) \Leftrightarrow P|\sum C_j \leq T^*|(\sum C_j)_{max}$.

Definition 2.1. A schedule σ is called Quasi-SPT (Q-SPT for short) if σ satisfies the following three conditions.

- Each machine receives exactly one job from \mathcal{R}_j , $j = 1, \ldots, k$.
- Jobs on each machine are scheduled in the nondecreasing order of processing time.
- There is no idle time.

Lemma 2.2. ([2]) A schedule σ is Q-SPT if and only if σ is an optimal schedule of problem $P||\sum C_j$.

Lemma 2.2 implies that solving the problem $P|\sum C_j \le T^*|(\sum C_j)_{max}$ equivalents to finding a Q-SPT optimal

schedule of $P||(\sum C_j)_{max}$. Hence we confine our attention on Q-SPT schedules in the following.

Let $\mathcal{J}^{(i)}$ be the current job set of jobs assigned to M_i and TM_i be the sum of processing times of jobs assigned to M_i at present, i.e., $TM_i = \sum_{i \in \mathcal{J}^{(i)}} p_i$.

Algorithm SPT.

Step 0: Let $TM_i := 0$, $\mathcal{J}^{(i)} := \emptyset$, $i = 1, \dots, m$ and j := n.

- **Step 1:** Let $TM_{i_0} = \min_{1 \le i \le m} \{TM_i\}$ (if a tie, then the minimum i_0 first and M_{i_0} is different from the last machine that is chosen to schedule job). Let $\mathcal{J}^{(i_0)} := \mathcal{J}^{(i_0)} \bigcup \{J_j\}$ and $TM_{i_0} := TM_{i_0} + p_j$ and schedule job J_j at the end of current schedule on M_{i_0} .
- **Step 2:** If j > 1, then let j := j 1 and go back to Step 1. Otherwise stop.

Lemma 2.3. The schedule derived by Algorithm SPT is a Q-SPT schedule.

Proof. Obviously, the *m* jobs $J_n, J_{n-1}, \ldots, J_{n-m+1}$, i.e., $J_{km}, J_{km-1}, \ldots, J_{(k-1)m+1}$ (for n = km) in \mathcal{R}_k are scheduled first on M_1, M_2, \ldots, M_m , respectively, by Algorithm SPT. Then by Algorithm SPT, we have

Claim 1. Job J_{lm-i} in \mathcal{R}_l is scheduled on M_{i+1} for $1 \le l \le k$ and $0 \le i \le m-1$.

Proof of Claim 1. Algorithm SPT shows that the jobs in $\mathcal{R}_k, \mathcal{R}_{k-1}, \ldots, \mathcal{R}_1$ are scheduled one by one. We prove Claim 1 by induction on the number *l* of ranks in \mathcal{R}_l . The basic case, l = k, is obvious. Assuming that Claim 1 holds for $2 \le l \le k - 1$, we will show that it also holds for l = 1.

According to the assumption that Claim 1 holds for $2 \le l \le k - 1$, we have $TM_1 \le TM_2 \le \ldots \le TM_m$, just before the jobs in \mathcal{R}_1 are scheduled, by $p_1 \ge p_2 \ge \cdots \ge p_n$. From Algorithm SPT, we have jobs J_m , J_{m-1}, \ldots, J_1 in \mathcal{R}_1 are scheduled one by one. So job J_m in \mathcal{R}_1 is scheduled on M_1 by Algorithm SPT. Further, at present $TM_1 + p_m = p_{km} + p_{(k-1)m} + \ldots + p_m \ge p_{km} + p_{(k-1)m+1} + \ldots + p_{m+1} = p_{km} + TM_m \ge TM_m \ge TM_{m-1} \ge \ldots \ge TM_2$. Hence, next job J_{m-1} in \mathcal{R}_1 is scheduled on M_2 by Algorithm SPT. Similarly, we may prove that J_{m-2} , J_{m-3} , \ldots , J_1 in \mathcal{R}_1 are scheduled on M_3 , M_4 , \ldots , M_m , respectively. Therefore Claim 1 also holds for l = 1.

By Claim 1 and Algorithm SPT, the schedule derived by Algorithm SPT is a Q-SPT schedule. \Box

So the schedule derived by Algorithm SPT is a feasible schedule for problem $P|\sum C_j \leq T^*|(\sum C_j)_{\text{max}}$. By a more elaborate analysis on the upper bound of the worst-case ratio of Algorithm SPT of [7], we receive better upper bound and lower bound.

Theorem 2.4. The worst-case ratio of Algorithm SPT for the problem $P | \sum C_j \leq T^* | (\sum C_j)_{\text{max}}$ is at most $\frac{9}{5}$ and at least $\frac{7}{4}$.

Proof. Without loss of generality, we may suppose that $k \ge 4$ by adding some dummy jobs with processing time

Download English Version:

https://daneshyari.com/en/article/4950900

Download Persian Version:

https://daneshyari.com/article/4950900

Daneshyari.com