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We consider the (linear) parametric 0–1 knapsack problem in which the profits of the 
items are affine-linear functions of a real-valued parameter and the task is to compute a 
solution for all values of the parameter. For this problem, it is known that the piecewise 
linear convex function mapping the parameter to the optimal objective value of the 
corresponding instance (called the optimal value function) can have exponentially many 
breakpoints (points of slope change), which implies that every optimal algorithm for the 
problem must output a number of solutions that is exponential in the number of items.
We provide the first (parametric) polynomial time approximation scheme (PTAS) for the 
parametric 0–1 knapsack problem. Moreover, we exploit the connection between the 
parametric problem and the bicriteria problem in order to show that the parametric 0–1 
knapsack problem admits a parametric FPTAS when the parameter is restricted to the 
positive real line and the slopes and intercepts of the affine-linear profit functions of 
the items are nonnegative. The method used to obtain this result applies to many linear 
parametric optimization problems and provides a general connection between bicriteria 
and linear parametric optimization problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The knapsack problem is a well-studied combinatorial 
optimization problem with numerous applications. Given 
a knapsack capacity and a set of n items with different 
weights and profits, the task in the classical 0–1 knapsack 
problem is to select a subset of the items with maximum 
total profit subject to the constraint that the total weight 
of the selected items may not exceed the knapsack capac-
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ity. The 0–1 knapsack problem is NP-hard, but it admits a 
fully polynomial time approximation scheme (FPTAS) and 
can be solved exactly in pseudo-polynomial time by dy-
namic programming (cf. [1]).

The (linear) parametric 0–1 knapsack problem is a gen-
eralization of the 0–1 knapsack problem in which the 
profits of the items are affine-linear functions of a pa-
rameter λ ∈ R. Here, the profit of each item i is given as 
pi = pi(λ) = ai + λbi with ai, bi ∈ Z and the problem can 
be written as

max
n∑

i=1

(ai + λbi) · xi

s.t.
n∑

i=1

wi · xi ≤ B

xi ∈ {0,1} for i = 1, . . . ,n
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where B ∈ N denotes the knapsack capacity and wi ∈ N>0
denotes the weight of item i. We note that, since positive 
as well as negative values ai , bi are allowed, some items 
might have negative profits even for positive values of λ. 
Moreover, the profits of some items might increase with 
increasing λ while the profits of other items might de-
crease.

For linear parametric optimization problems such as 
the parametric 0–1 knapsack problem, one is interested 
in obtaining optimal solutions of the problem for all val-
ues of λ on the real line (or within a given interval). 
Since the objective values of feasible solutions are affine-
linear functions of λ, it is easy to see that such a col-
lection of optimal solutions is given by a finite, increas-
ing sequence of parameter values −∞ = λ0, . . . , λK+1 =
+∞ together with an optimal solution for each inter-
val (−∞, λ1], [λ1, λ2], . . . , [λK−1, λK ], [λK , +∞), where an 
optimal solution for an interval is a feasible solution that 
is optimal for all values of λ within the interval. The func-
tion mapping λ ∈ R to the optimal objective value of the 
given instance for this value of λ is called the optimal 
value function (or the optimal cost curve). The above struc-
ture of optimal solutions implies that the optimal value 
function is piecewise linear and convex (concave in case 
of a minimization problem) and its breakpoints (points of 
slope change) are exactly at the points λ1, . . . , λK (assum-
ing that K was chosen as small as possible). Thus, the 
number K of breakpoints is a natural measure of the com-
plexity of the problem. For the parametric 0–1 knapsack 
problem, Carstensen [2] showed that the number of break-
points can be exponential in the number n of items, which 
implies that every optimal algorithm for the parametric 
0–1 knapsack problem has to output an exponential num-
ber of solutions. Moreover, she raised the question which 
approximations of the optimal value function are obtain-
able in polynomial time.

1.1. Previous work

Linear parametric optimization problems in which the 
objective values of feasible solutions are affine-linear func-
tions of a real parameter are widely studied in the litera-
ture. Besides the parametric 0–1 knapsack problem studied 
here, examples include the parametric shortest path prob-
lem [3–6], the parametric minimum spanning tree prob-
lem [7], and the parametric minimum cost flow prob-
lem [2]. While the number of breakpoints in the optimal 
value function of the parametric minimum spanning tree 
problem is known to be polynomial in the input size of 
the problem [7], the optimal value function of the para-
metric minimum cost flow problem can have exponentially 
many breakpoints even when the slopes of the affine-
linear functions are restricted to the set {0, 1} [2] and 
the optimal value function of the parametric shortest path 
problem can have pseudo-exponentially many breakpoints 
(n�(log n) on graphs with n nodes) [5,6]. When the slopes of 
the affine-linear functions are integers in {−M, . . . , M} for 
some constant M ∈N, however, the number of breakpoints 
in the optimal value function of the parametric shortest 
path problem becomes polynomial [4]. In several variants 
of parametric maximum flow problems, it is known that 

the minimum cuts satisfy so-called “nesting properties”, 
which imply that there are at most n − 1 breakpoints in 
the optimal value function on graphs with n nodes [8–11]. 
Parametric versions of general linear programs, mixed in-
teger programs, and nonlinear programs (where the most 
general cases consider also non-affine dependence on the 
parameter as well as constraints depending on the param-
eter) are also widely studied. For an extensive literature 
review on these problems, we refer to [12].

The parametric 0–1 knapsack problem first appeared in 
the work of Carstensen [2], who shows that the number 
of breakpoints in the optimal value function can be ex-
ponential in the number of items. This holds even when 
restricting λ to a compact interval on the positive real 
line R>0 with the property that all profits are positive 
within this interval. However, she also shows that the 
number of breakpoints in the optimal value function of any 
linear parametric binary integer program becomes linear in 
the number of variables when the slopes and/or intercepts 
of the affine-linear functions are integers in {−M, . . . , M}
for some constant M ∈ N. In particular, this implies that 
the number of breakpoints in the optimal value function 
of the parametric 0–1 knapsack problem becomes linear 
in the number of items under this assumption. Eben-
Chaime [13] shows that the optimal value function of the 
parametric 0–1 knapsack problem (together with a corre-
sponding optimal solution between any two breakpoints) 
can be computed in O(KnB), where K denotes the num-
ber of breakpoints. This is achieved by using a general 
method of Eisner and Severance [14], which can be used 
to solve any instance of a linear parametric optimization 
problem with K breakpoints in the optimal value function 
by solving the instance for O(K ) fixed values of the pa-
rameter.

A problem closely related to the parametric 0–1 knap-
sack problem is the inverse-parametric knapsack problem
[15], which consists of computing the smallest value of λ

for which the optimal value function of the parametric 0–1 
knapsack problem has value equal to a prespecified so-
lution value. For this problem, pseudo-polynomial (exact) 
algorithms are provided by Burkard and Pferschy [15].

The parametric 0–1 knapsack problem is also closely 
related to the bicriteria 0–1 knapsack problem since it 
can be interpreted as the weighted sum scalarization of 
the bicriteria problem. Thus, the optimal solutions of the 
parametric problem on the positive real line are exactly 
the supported efficient solutions of the bicriteria problem. 
For the bicriteria and multicriteria 0–1 knapsack problem, 
where the profit of each item in all objective functions is 
assumed to be nonnegative, several (multicriteria) FPTAS 
are known [16–19], i.e., algorithms that, given ε > 0, com-
pute in time polynomial in the size of the input and 1/ε
a set of solutions that, for each efficient solution, contains 
a solution that is at most at a factor (1 − ε) worse in all 
objective functions.

1.2. Our contribution

We show that the parametric 0–1 knapsack prob-
lem admits a (parametric) polynomial time approximation 
scheme (PTAS). This means that, for any given ε > 0, there 
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