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The k-means problem consists of finding k centers in Rd that minimize the sum of the 
squared distances of all points in an input set P from Rd to their closest respective center. 
Awasthi et al. recently showed that there exists a constant ε′ > 0 such that it is NP-hard 
to approximate the k-means objective within a factor of 1 + ε′. We establish that 1 + ε′ is 
at least 1.0013.

© 2016 Elsevier B.V. All rights reserved.

For a given set of points P ⊂ R
d , the k-means prob-

lem consists of finding a partition of P into k clusters 
(C1, . . . , Ck) with corresponding centers (c1, . . . , ck) that 
minimize the sum of the squared distances of all points 
in P to their corresponding center, i.e. the quantity

arg min
(C1,...,Ck),(c1,...,ck)

k∑
i=1

∑
x∈Ci

||x − ci ||2

where || · || denotes the Euclidean distance. The k-means 
problem has been well-known since the fifties, when 
Lloyd [10] developed the famous local search heuristic 
also known as the k-means algorithm. Various exact, ap-
proximate, and heuristic algorithms have been developed 
since then. For a constant number of clusters k and a 
constant dimension d, the problem can be solved by enu-
merating weighted Voronoi diagrams [7]. If the dimen-
sion is arbitrary but the number of centers is constant, 
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many polynomial-time approximation schemes are known. 
For example, [6] gives an algorithm with running time 
O(nd + 2poly(1/ε,k)). In the general case, only constant-
factor approximation algorithms are known [8,9], but no 
algorithm with an approximation ratio smaller than 9 has 
yet been found.

Surprisingly, no hardness results for the k-means prob-
lem were known even as recently as ten years ago. Today, 
it is known that the k-means problem is NP-hard, even for 
constant k and arbitrary dimension d [1,4] and also for ar-
bitrary k and constant d [12]. Early this year, Awasthi et
al. [2] showed that there exists a constant ε′ > 0 such that 
it is NP-hard to approximate the k-means objective within 
a factor of 1 + ε′ . They use a reduction from the Vertex 
Cover problem on triangle-free graphs. Here, one is given 
a graph G = (V , E) that does not contain a triangle, and 
the goal is to compute a minimal set of vertices S which 
covers all the edges, meaning that for any (vi, v j) ∈ E , it 
holds that vi ∈ S or v j ∈ S . To decide if k vertices suffice to 
cover a given G , they construct a k-means instance in the 
following way. Let bi = (0, . . . , 1, . . . , 0) be the ith vector in 
the standard basis of R|V | . For an edge e = (vi, v j) ∈ E , set 
xe = bi + b j . The instance consists of the parameter k and 
the point set {xe | e ∈ E}. Note that the number of points is 
|E| and their dimension is |V |.
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A relatively simple analysis shows that this reduction 
is approximation-preserving. A vertex cover S ⊆ V of size 
k corresponds to a solution for k-means where we have 
centers at {bi : vi ∈ S} and each point x(vi ,v j) is assigned 
to a center in S ∩ {bi, b j} (which is nonempty because S
is a vertex cover). In addition, it can also be shown that a 
good solution for k-means reveals a small vertex cover of 
G when G is triangle-free.

Unfortunately, this reduction transforms (1 + ε)-hard-
ness for Vertex Cover on triangle-free graphs to (1 +
ε′)-hardness for k-means where ε′ = O ( ε

�
) and � is the 

maximum degree of G . Awasthi et al. [2] proved hardness 
of Vertex Cover on triangle-free graphs via a reduction 
from general Vertex Cover, where the best hardness result 
of Dinur and Safra [5] has an unspecified large constant �. 
Furthermore, the reduction uses a sophisticated spectral 
analysis to bound the size of the minimum vertex cover 
of a suitably chosen graph product.

Our result is based on the observation that hardness re-
sults for Vertex Cover on small-degree graphs lead to hard-
ness of Vertex Cover on triangle-free graphs with the same 
degree in an extremely simple way. Combined with the 
result of Chlebík and Chlebíková [3] that proves hardness 
of approximating Vertex Cover on 4-regular graphs within 
≈ 1.02, this observation gives hardness of Vertex Cover on 
triangle-free, degree-4 graphs without relying on the spec-
tral analysis. The same reduction from Vertex Cover on 
triangle-free graphs to k-means then proves APX-hardness 
of k-means, with an improved ratio due to the small de-
gree of G .

1. Main result

Our main result is the following theorem.

Theorem 1. It is NP-hard to approximate k-means within a fac-
tor 1.0013.

We prove hardness of k-means by a reduction from 
Vertex Cover on 4-regular graphs, for which we have the 
following hardness result of Chlebík and Chlebíková [3].

Theorem 2 ([3], see also Appendix A). Given a 4-regular graph 
G = (V (G), E(G)), it is NP-hard to distinguish the following 
cases.

• G has a vertex cover with at most αmin|V (G)| vertices.
• Every vertex cover of G has at least αmax|V (G)| vertices.

Here, αmin = (2μ4,k + 8)/(4μ4,k + 12) and αmax = (2μ4,k +
9)/(4μ4,k + 12) with μ4,k ≤ 21.7. In particular, it is NP-hard 
to approximate Vertex Cover on degree-4 graphs within a factor 
of (αmax/αmin) ≥ 1.0192.

Given a 4-regular graph G = (V (G), E(G)) for Vertex 
Cover with n := |V (G)| vertices and 2n edges, we first 
partition E(G) into E1 and E2 such that |E1| = |E2| =
|E(G)|/2 = n and such that the subgraph (V (G), E2) is bi-
partite. Such a partition always exists: every graph has a 
cut containing at least half of the edges (well-known; see, 

e.g., [13]). Choose n of these cut edges for E2 and let E1
be the remaining edges. We define G ′ = (V (G ′), E(G ′)) by 
splitting each edge in E1 into three edges. Formally, G ′ is 
given by

V (G ′) = V (G) ∪
⎛
⎝ ⋃

e=(u,v)∈E1

{v ′
e,u, v ′

e,v}
⎞
⎠ ,

E(G ′) =
⎛
⎝ ⋃

e=(u,v)∈E1

{
(v, v ′

e,v), (v ′
e,v , v ′

e,u), (v ′
e,u, u)

}
⎞
⎠

∪ E2.

Notice that V has n + 2n = 3n vertices and 3n + n = 4n
edges. It is also easy to see that the maximum degree 
of V is 4, and that V does not have any triangle, since 
any triangle of G contains at least one edge of E1 (because 
(V (G), E2) is bipartite) and each edge of E1 is split into 
three.

Given G ′ as an instance of Vertex Cover on triangle-free 
graphs, the reduction to the k-means problem is the same 
as before. Let bi = (0, . . . , 1, . . . , 0) be the ith vector in the 
standard basis of R3n . For an edge e = (vi, v j) ∈ E(G ′), set 
xe = bi + b j . The instance consists of the parameter k =
(αmin + 1)n and the point set {xe | e ∈ E}. Notice that the 
number of points is now 4n and their dimension is 3n.

We now analyze the reduction. Note that for k-means, 
once a cluster is fixed as a set of points, the optimal cen-
ter and the cost of the cluster are determined.4 Let cost(C)

be the cost of a cluster C . We abuse notation and use C
for the set of edges {e : xe ∈ C} ⊆ E(G ′) as well. For an 
integer l, define an l-star to be a set of l distinct edges in-
cident to a common vertex. The following lemma is proven 
by Awasthi et al. and shows that if C is cost-efficient, then 
two vertices are sufficient to cover many edges in C . Fur-
thermore, an optimal C is either a star or a triangle.

Lemma 3 ([2], Proposition 9 and Lemma 11). Let C = {xe1 , . . . ,
xel } be a cluster. Then l − 1 ≤ cost(C) ≤ 2l − 1, and there exist 
two vertices that cover at least �2l − 1 − cost(C) edges in C. 
Furthermore, cost(C) = l − 1 if and only if C is either an l-star 
or a triangle, and otherwise, cost(C) ≥ l − 1/2.

1.1. Completeness

Lemma 4. If G has a vertex cover of size at most αminn, the in-
stance of k-means produced by the reduction admits a solution 
of cost at most (3 − αmin)n.

Proof. Suppose G has a vertex cover S with at most 
αminn vertices. For each edge e = (u, v) ∈ E1, let v ′(e) =
v ′

e,u if v ∈ S , and v ′(e) = v ′
e,v otherwise. Let S ′ := S ∪

(∪e∈E1 {v ′(e)}. Since S is a vertex cover of G , for every edge 
e ∈ E1, S and v ′(e) cover all three edges of E(G ′) corre-
sponding to e. Therefore, S ′ is a vertex cover of G ′ , and 
since |E1| = n, it has at most (αmin + 1)n vertices.

4 For k = 1, the optimal solution to the k-means problem is the centroid
of the point set. This is due to a well-known fact, see, e.g., Lemma 2.1 
in [9].
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