Improved and simplified inapproximability for k-means

Euiwoong Lee ${ }^{1}$, Melanie Schmidt ${ }^{*, 2}$, John Wright ${ }^{3}$
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States

ARTICLE INFO

Article history:

Received 3 September 2015
Accepted 27 November 2016
Available online 8 December 2016
Communicated by R. Uehara

Keywords:

k-Means
Hardness of approximation
Clustering
Computational complexity

Abstract

The k-means problem consists of finding k centers in \mathbb{R}^{d} that minimize the sum of the squared distances of all points in an input set P from \mathbb{R}^{d} to their closest respective center. Awasthi et al. recently showed that there exists a constant $\varepsilon^{\prime}>0$ such that it is NP-hard to approximate the k-means objective within a factor of $1+\varepsilon^{\prime}$. We establish that $1+\varepsilon^{\prime}$ is at least 1.0013 .

© 2016 Elsevier B.V. All rights reserved.

For a given set of points $P \subset \mathbb{R}^{d}$, the k-means problem consists of finding a partition of P into k clusters $\left(C_{1}, \ldots, C_{k}\right)$ with corresponding centers $\left(c_{1}, \ldots, c_{k}\right)$ that minimize the sum of the squared distances of all points in P to their corresponding center, i.e. the quantity
$\arg \min _{\left(C_{1}, \ldots, C_{k}\right),\left(c_{1}, \ldots, c_{k}\right)} \sum_{i=1}^{k} \sum_{x \in C_{i}}\left\|x-c_{i}\right\|^{2}$
where || $\|\|$ denotes the Euclidean distance. The k-means problem has been well-known since the fifties, when Lloyd [10] developed the famous local search heuristic also known as the k-means algorithm. Various exact, approximate, and heuristic algorithms have been developed since then. For a constant number of clusters k and a constant dimension d, the problem can be solved by enumerating weighted Voronoi diagrams [7]. If the dimension is arbitrary but the number of centers is constant,

[^0]many polynomial-time approximation schemes are known. For example, [6] gives an algorithm with running time $\mathcal{O}\left(n d+2^{\text {poly }(1 / \varepsilon, k)}\right)$. In the general case, only constantfactor approximation algorithms are known [8,9], but no algorithm with an approximation ratio smaller than 9 has yet been found.

Surprisingly, no hardness results for the k-means problem were known even as recently as ten years ago. Today, it is known that the k-means problem is NP-hard, even for constant k and arbitrary dimension $d[1,4]$ and also for arbitrary k and constant d [12]. Early this year, Awasthi et al. [2] showed that there exists a constant $\varepsilon^{\prime}>0$ such that it is NP-hard to approximate the k-means objective within a factor of $1+\varepsilon^{\prime}$. They use a reduction from the Vertex Cover problem on triangle-free graphs. Here, one is given a graph $G=(V, E)$ that does not contain a triangle, and the goal is to compute a minimal set of vertices S which covers all the edges, meaning that for any $\left(v_{i}, v_{j}\right) \in E$, it holds that $v_{i} \in S$ or $v_{j} \in S$. To decide if k vertices suffice to cover a given G, they construct a k-means instance in the following way. Let $b_{i}=(0, \ldots, 1, \ldots, 0)$ be the i th vector in the standard basis of $\mathbb{R}^{|V|}$. For an edge $e=\left(v_{i}, v_{j}\right) \in E$, set $x_{e}=b_{i}+b_{j}$. The instance consists of the parameter k and the point set $\left\{x_{e} \mid e \in E\right\}$. Note that the number of points is $|E|$ and their dimension is $|V|$.

A relatively simple analysis shows that this reduction is approximation-preserving. A vertex cover $S \subseteq V$ of size k corresponds to a solution for k-means where we have centers at $\left\{b_{i}: v_{i} \in S\right\}$ and each point $x_{\left(v_{i}, v_{j}\right)}$ is assigned to a center in $S \cap\left\{b_{i}, b_{j}\right\}$ (which is nonempty because S is a vertex cover). In addition, it can also be shown that a good solution for k-means reveals a small vertex cover of G when G is triangle-free.

Unfortunately, this reduction transforms $(1+\varepsilon)$-hardness for Vertex Cover on triangle-free graphs to ($1+$ ε^{\prime})-hardness for k-means where $\varepsilon^{\prime}=O\left(\frac{\varepsilon}{\Delta}\right)$ and Δ is the maximum degree of G. Awasthi et al. [2] proved hardness of Vertex Cover on triangle-free graphs via a reduction from general Vertex Cover, where the best hardness result of Dinur and Safra [5] has an unspecified large constant Δ. Furthermore, the reduction uses a sophisticated spectral analysis to bound the size of the minimum vertex cover of a suitably chosen graph product.

Our result is based on the observation that hardness results for Vertex Cover on small-degree graphs lead to hardness of Vertex Cover on triangle-free graphs with the same degree in an extremely simple way. Combined with the result of Chlebík and Chlebíková [3] that proves hardness of approximating Vertex Cover on 4-regular graphs within ≈ 1.02, this observation gives hardness of Vertex Cover on triangle-free, degree- 4 graphs without relying on the spectral analysis. The same reduction from Vertex Cover on triangle-free graphs to k-means then proves APX-hardness of k-means, with an improved ratio due to the small degree of G.

1. Main result

Our main result is the following theorem.

Theorem 1. It is NP-hard to approximate k-means within a factor 1.0013 .

We prove hardness of k-means by a reduction from Vertex Cover on 4-regular graphs, for which we have the following hardness result of Chlebík and Chlebíková [3].

Theorem 2 ([3], see also Appendix A). Given a 4-regular graph $G=(V(G), E(G))$, it is NP-hard to distinguish the following cases.

- G has a vertex cover with at most $\alpha_{\text {min }}|V(G)|$ vertices.
- Every vertex cover of G has at least $\alpha_{\max }|V(G)|$ vertices.

Here, $\alpha_{\min }=\left(2 \mu_{4, k}+8\right) /\left(4 \mu_{4, k}+12\right)$ and $\alpha_{\max }=\left(2 \mu_{4, k}+\right.$ $9) /\left(4 \mu_{4, k}+12\right)$ with $\mu_{4, k} \leq 21.7$. In particular, it is $N P$-hard to approximate Vertex Cover on degree-4 graphs within a factor of $\left(\alpha_{\max } / \alpha_{\text {min }}\right) \geq 1.0192$.

Given a 4-regular graph $G=(V(G), E(G))$ for Vertex Cover with $n:=|V(G)|$ vertices and $2 n$ edges, we first partition $E(G)$ into E_{1} and E_{2} such that $\left|E_{1}\right|=\left|E_{2}\right|=$ $|E(G)| / 2=n$ and such that the subgraph $\left(V(G), E_{2}\right)$ is bipartite. Such a partition always exists: every graph has a cut containing at least half of the edges (well-known; see,
e.g., [13]). Choose n of these cut edges for E_{2} and let E_{1} be the remaining edges. We define $G^{\prime}=\left(V\left(G^{\prime}\right), E\left(G^{\prime}\right)\right)$ by splitting each edge in E_{1} into three edges. Formally, G^{\prime} is given by

$$
\begin{aligned}
V\left(G^{\prime}\right) & =V(G) \cup\left(\bigcup_{e=(u, v) \in E_{1}}\left\{v_{e, u}^{\prime}, v_{e, v}^{\prime}\right\}\right) \\
E\left(G^{\prime}\right) & =\left(\bigcup_{e=(u, v) \in E_{1}}\left\{\left(v, v_{e, v}^{\prime}\right),\left(v_{e, v}^{\prime}, v_{e, u}^{\prime}\right),\left(v_{e, u}^{\prime}, u\right)\right\}\right) \\
& \cup E_{2} .
\end{aligned}
$$

Notice that V has $n+2 n=3 n$ vertices and $3 n+n=4 n$ edges. It is also easy to see that the maximum degree of V is 4 , and that V does not have any triangle, since any triangle of G contains at least one edge of E_{1} (because $\left(V(G), E_{2}\right)$ is bipartite) and each edge of E_{1} is split into three.

Given G^{\prime} as an instance of Vertex Cover on triangle-free graphs, the reduction to the k-means problem is the same as before. Let $b_{i}=(0, \ldots, 1, \ldots, 0)$ be the i th vector in the standard basis of $\mathbb{R}^{3 n}$. For an edge $e=\left(v_{i}, v_{j}\right) \in E\left(G^{\prime}\right)$, set $x_{e}=b_{i}+b_{j}$. The instance consists of the parameter $k=$ $\left(\alpha_{\min }+1\right) n$ and the point set $\left\{x_{e} \mid e \in E\right\}$. Notice that the number of points is now $4 n$ and their dimension is $3 n$.

We now analyze the reduction. Note that for k-means, once a cluster is fixed as a set of points, the optimal center and the cost of the cluster are determined. ${ }^{4}$ Let cost (C) be the cost of a cluster C. We abuse notation and use C for the set of edges $\left\{e: x_{e} \in C\right\} \subseteq E\left(G^{\prime}\right)$ as well. For an integer l, define an l-star to be a set of l distinct edges incident to a common vertex. The following lemma is proven by Awasthi et al. and shows that if C is cost-efficient, then two vertices are sufficient to cover many edges in C. Furthermore, an optimal C is either a star or a triangle.

Lemma 3 ([2], Proposition 9 and Lemma 11). Let $C=\left\{x_{e_{1}}, \ldots\right.$, $\left.x_{e_{l}}\right\}$ be a cluster. Then $l-1 \leq \operatorname{cost}(C) \leq 2 l-1$, and there exist two vertices that cover at least $\lceil 2 l-1-\operatorname{cost}(C)\rceil$ edges in C. Furthermore, $\operatorname{cost}(C)=l-1$ if and only if C is either an l-star or a triangle, and otherwise, $\operatorname{cost}(C) \geq l-1 / 2$.

1.1. Completeness

Lemma 4. If G has a vertex cover of size at most $\alpha_{\min } n$, the instance of k-means produced by the reduction admits a solution of cost at most $\left(3-\alpha_{\min }\right) n$.

Proof. Suppose G has a vertex cover S with at most $\alpha_{\text {min }} n$ vertices. For each edge $e=(u, v) \in E_{1}$, let $v^{\prime}(e)=$ $v_{e, u}^{\prime}$ if $v \in S$, and $v^{\prime}(e)=v_{e, v}^{\prime}$ otherwise. Let $S^{\prime}:=S \cup$ $\left(\cup_{e \in E_{1}}\left\{v^{\prime}(e)\right\}\right.$. Since S is a vertex cover of G, for every edge $e \in E_{1}, S$ and $v^{\prime}(e)$ cover all three edges of $E\left(G^{\prime}\right)$ corresponding to e. Therefore, S^{\prime} is a vertex cover of G^{\prime}, and since $\left|E_{1}\right|=n$, it has at most $\left(\alpha_{\min }+1\right) n$ vertices.

[^1]
https://daneshyari.com/en/article/4950905

Download Persian Version:

https://daneshyari.com/article/4950905

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: melanie.schmidt@tu-dortmund.de (M. Schmidt).
 1 Supported by the Samsung Scholarship and NSF CCF-1115525.
 2 Supported by the German Academic Exchange Service (DAAD).
 ${ }^{3}$ Supported by a Simons Award for Graduate Students in Theoretical Computer Science.

[^1]: ${ }^{4}$ For $k=1$, the optimal solution to the k-means problem is the centroid of the point set. This is due to a well-known fact, see, e.g., Lemma 2.1 in [9].

