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Contact graph representation is a classical graph drawing style where vertices are represented
by geometric objects such that edges correspond to contacts between the objects. Contact
graph representations using axis-aligned rectilinear polygons are well-investigated. On the
other hand, only a scarcity of results and techniques are available for cases using polygons
that are not necessarily rectilinear. In this paper, we investigate a type of contact graph
representations (named t-TkR) using k-sided convex polygons with their boundaries being
t-sided. Given a biconnected outerplane graph, we present a clean necessary and sufficient
condition for the graph to admit a t-TkR. We give a linear time algorithm for constructing
an area-universal 3-T4R of a given biconnected outerplane graph, which is of interest since
most of the previous results on area-universal drawings are with respect to rectilinear
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1. Introduction

A contact graph representation of a planar graph is a
drawing in which vertices are represented by interior-
disjoint geometric objects such that edges correspond to
contacts between those objects. Following Koebe’s circle
packing theorem that every planar graph can be drawn as
touching circles, a variety of contact graph representations
have been proposed and studied in the literature over the
years, see, e.g., [3-5,8-10].

Motivated by various applications in floor-planning, car-
tographic design, and data visualization, rectilinear duals,
in which all vertices are represented by axis-aligned rec-
tilinear polygons such that the drawing forms a tiling of
a rectangle, have received extensive investigation in both
VLSI design and graph drawing communities. The polygonal
complexity of a rectilinear dual is defined as the maximum
number of sides of any polygon in the drawing. A rectilin-
ear dual of a graph G is called area-universal if it can real-
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ize any area-assignment f :V(G) — R.g in the sense that
for every v € V(G), the corresponding polygon has area
f(v). Designing algorithms for constructing area-universal
rectilinear duals of low polygonal complexity has been the
focus of a number of recent results (see [3] and its cita-
tions).

In practice, it is common to encounter objects displayed
as polygons that are not necessarily rectilinear. In con-
trast to the relatively well-studied rectilinear cases, only
a scarcity of results and methods are available for tackling
cases for polygons that are not necessarily rectilinear.

To extend the study of rectilinear duals to broader set-
tings, the drawing style convex polygonal dual is proposed
as a convex polygonal analogue of rectilinear duals [4]. For-
mally, a convex polygonal dual is a contact representation
of a graph in which vertices are represented by convex
polygons such that the drawing forms a tiling of a con-
vex polygon. A drawing is called k-sided if each vertex is
represented by a polygon of at most k sides in the draw-
ing.

Our interests in this paper focus on biconnected out-
erplane graphs having (t, k)-touching convex polygon repre-
sentations, which are k-sided convex polygonal duals with
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Fig. 1. A graph G and its convex polygonal dual G9.

their boundary polygons being t-sided. We abbreviate such
a representation as t-TkR. For instance, Fig. 1(2) is a 6-T4R.

The purpose of this paper is to study convex polygonal
duals for biconnected outerplane graphs. For a biconnected
outerplane graph G, we present:

1. A clean necessary and sufficient condition for the ex-
istence of a t-TkR, for k > 3: G admits a t-TkR iff
3<t=<(k—=DIV(G)| - |EG)|+1.

2. A simple linear time algorithm for constructing an
area-universal 3-T4R of G.

Related work. The study of representing graphs by touch-
ing triangles was initiated in [9]. It is known that tricon-
nected cubic plane graphs [10] and strongly outerplane
graphs [8] admit 3-T3R. Plane graphs having straight-line
drawings with only triangular faces have been charac-
terized by flat-angle assignments [1] and Schnyder la-
bellings [2]. For contact representations of convex poly-
gons, it was shown in [5] that 6-sided polygons are nec-
essary and sufficient for plane graphs if holes are al-
lowed. In [4], it was shown that convex polygonal duals
can be defined in Monadic Second-Order Logic, yielding
fixed-parameter tractability results for checking whether
various plane graphs admit convex polygonal duals. For
area-universal drawings, 12-sided polygons are known to
be necessary and sufficient for rectilinear duals [3]. To our
best knowledge, the work of [7] on table cartograms is the
only result on area-universal drawings in a non-rectilinear
setting.

2. Preliminaries

A graph is planar iff it can be drawn in the Euclidean
plane without edge crossings. A plane graph is a planar
graph with a fixed combinatorial embedding and a desig-
nated outer face. We write fp(G) to denote the outer face
of a plane graph G = (V, E). All the faces other than fo (G)
are called inner faces. A vertex (or an edge) is called bound-
ary if it is located in fo (G); otherwise, it is non-boundary.

An outerplanar graph is a planar graph with a planar
embedding in which all vertices belong to the outer face.
An outerplanar graph with such an embedding is called
an outerplane graph. A graph is biconnected if removing any
single vertex does not render the graph disconnected.

We write Xy to denote a side of a polygon whose two
end points are x and y. See Fig. 1 for an example of a con-
vex polygonal dual. Note that convex polygon G in Fig. 1(2)
has four sides, namely, ag, gf, fe and éa. Note that the

side ea consists of three segments (i.e., edges) (e, j), (j, h)
and (h,a).

In a convex polygonal dual G4, junction points are points
that are endpoints of some segments in the drawing. For
convenience, we write B J(G%) and N J(G%) to denote the
sets of boundary and non-boundary junction points of G¢,
respectively. In Fig. 1(2), there are 10 junction points with
BJ(GY) = {a,b,c,d,e, f,g} and NJ(G%) = {h,i, j}. Note
that c is interior to one side bd of the boundary polygon.
The arrows in the drawing indicate 180° angles.

3. Convex polygonal duals of biconnected outerplane
graphs

With respect to a t-TkR of a biconnected outerplane
graph, we first prove the following lemma which gives an
upper bound on the number of sides of the boundary poly-
gon (i.e., t):

Lemma 1. Let G be a biconnected outerplane graph. If G admits
at-TkR, then3 <t < (k—1)|V(G)|— |E(G)| + 1. Moreover, the
equality t = (k—1)|V(G)| — |E(G)| + 1 holds iff in the drawing,

(1) each polygon is exactly k-sided, and
(2) each non-boundary junction point is interior to a side of a
polygon.

Proof. The t > 3 is obvious since a polygon must have at
least 3 sides. Let N be the total number of polygon corners
in the t-TkR, say GY, of G. For convenience, G? is also re-
ferred to as a drawing. As each vertex in V (G) corresponds
to a polygon (of at most k sides) in G%, N < k|V (G)]. Since
G is a biconnected outerplane graph, each polygon must
intersect the boundary of the drawing in one connected
path or a point; otherwise, the vertex corresponding to
that polygon will be a cut-vertex in G-violating the as-
sumption of G being biconnected. Since a path of s sides
has s+ 1 corners, when a k-sided polygon contains s sides
on the boundary of the drawing, it has exactly k-s-1 cor-
ners located not along the boundary of the drawing G¢.

Let N = No + N;, where Np denotes the total number
of corners located along the boundary of the drawing (i.e.,
corners associated with boundary junction points), and N;
denotes the total numbers of corners located in the interior
of the drawing (i.e., corners associated with non-boundary
junction points). First, we show that No > |V (G)| +t. To
see this, suppose N, is the number of sides on the bound-
ary of the drawing that intersect with the polygon corre-
sponding to v. Note that a side can intersect with more
than one polygon. For instance, in Fig. 1(2) Nc = Np =1
and the polygons corresponding to vertices C and D inter-
sect with side bcd. In view of above, Ng = ZveV(G)(NV +
D= ver Nv + VG 2+ V(G)].

For N;, we argue that N; > ZpeN](Gd) deg(p) —
INJ(GY9)|. Since each junction point can be associated
with at most one 180° angle, the number of 180° an-
gles at non-boundary junction points is at most |N J(G%)|.
Hence the above inequality holds. As we note that each
of NJ(G% corresponds to an inner face of G, according
to Euler’s formula, [N J(G)| = |E(G)| — |V (G)| + 1. For the
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