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Contact graph representation is a classical graph drawing style where vertices are represented 
by geometric objects such that edges correspond to contacts between the objects. Contact 
graph representations using axis-aligned rectilinear polygons are well-investigated. On the 
other hand, only a scarcity of results and techniques are available for cases using polygons 
that are not necessarily rectilinear. In this paper, we investigate a type of contact graph 
representations (named t-TkR) using k-sided convex polygons with their boundaries being 
t-sided. Given a biconnected outerplane graph, we present a clean necessary and sufficient 
condition for the graph to admit a t-TkR. We give a linear time algorithm for constructing 
an area-universal 3-T4R of a given biconnected outerplane graph, which is of interest since 
most of the previous results on area-universal drawings are with respect to rectilinear 
settings.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A contact graph representation of a planar graph is a 
drawing in which vertices are represented by interior-
disjoint geometric objects such that edges correspond to 
contacts between those objects. Following Koebe’s circle 
packing theorem that every planar graph can be drawn as 
touching circles, a variety of contact graph representations 
have been proposed and studied in the literature over the 
years, see, e.g., [3–5,8–10].

Motivated by various applications in floor-planning, car-
tographic design, and data visualization, rectilinear duals, 
in which all vertices are represented by axis-aligned rec-
tilinear polygons such that the drawing forms a tiling of 
a rectangle, have received extensive investigation in both 
VLSI design and graph drawing communities. The polygonal 
complexity of a rectilinear dual is defined as the maximum 
number of sides of any polygon in the drawing. A rectilin-
ear dual of a graph G is called area-universal if it can real-
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ize any area-assignment f : V (G) → R>0 in the sense that 
for every v ∈ V (G), the corresponding polygon has area 
f (v). Designing algorithms for constructing area-universal 
rectilinear duals of low polygonal complexity has been the 
focus of a number of recent results (see [3] and its cita-
tions).

In practice, it is common to encounter objects displayed 
as polygons that are not necessarily rectilinear. In con-
trast to the relatively well-studied rectilinear cases, only 
a scarcity of results and methods are available for tackling 
cases for polygons that are not necessarily rectilinear.

To extend the study of rectilinear duals to broader set-
tings, the drawing style convex polygonal dual is proposed 
as a convex polygonal analogue of rectilinear duals [4]. For-
mally, a convex polygonal dual is a contact representation 
of a graph in which vertices are represented by convex 
polygons such that the drawing forms a tiling of a con-
vex polygon. A drawing is called k-sided if each vertex is 
represented by a polygon of at most k sides in the draw-
ing.

Our interests in this paper focus on biconnected out-
erplane graphs having (t, k)-touching convex polygon repre-
sentations, which are k-sided convex polygonal duals with 

http://dx.doi.org/10.1016/j.ipl.2016.09.003
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:yen@cc.ee.ntu.edu.tw
http://dx.doi.org/10.1016/j.ipl.2016.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.09.003&domain=pdf


2 Y.-J. Chang, H.-C. Yen / Information Processing Letters 118 (2017) 1–5

Fig. 1. A graph G and its convex polygonal dual Gd .

their boundary polygons being t-sided. We abbreviate such 
a representation as t-TkR. For instance, Fig. 1(2) is a 6-T4R.

The purpose of this paper is to study convex polygonal 
duals for biconnected outerplane graphs. For a biconnected 
outerplane graph G , we present:

1. A clean necessary and sufficient condition for the ex-
istence of a t-TkR, for k > 3: G admits a t-TkR iff 
3 ≤ t ≤ (k − 1)|V (G)| − |E(G)| + 1.

2. A simple linear time algorithm for constructing an 
area-universal 3-T4R of G .

Related work. The study of representing graphs by touch-
ing triangles was initiated in [9]. It is known that tricon-
nected cubic plane graphs [10] and strongly outerplane 
graphs [8] admit 3-T3R. Plane graphs having straight-line 
drawings with only triangular faces have been charac-
terized by flat-angle assignments [1] and Schnyder la-
bellings [2]. For contact representations of convex poly-
gons, it was shown in [5] that 6-sided polygons are nec-
essary and sufficient for plane graphs if holes are al-
lowed. In [4], it was shown that convex polygonal duals 
can be defined in Monadic Second-Order Logic, yielding 
fixed-parameter tractability results for checking whether 
various plane graphs admit convex polygonal duals. For 
area-universal drawings, 12-sided polygons are known to 
be necessary and sufficient for rectilinear duals [3]. To our 
best knowledge, the work of [7] on table cartograms is the 
only result on area-universal drawings in a non-rectilinear 
setting.

2. Preliminaries

A graph is planar iff it can be drawn in the Euclidean 
plane without edge crossings. A plane graph is a planar 
graph with a fixed combinatorial embedding and a desig-
nated outer face. We write f O (G) to denote the outer face 
of a plane graph G = (V , E). All the faces other than f O (G)

are called inner faces. A vertex (or an edge) is called bound-
ary if it is located in f O (G); otherwise, it is non-boundary.

An outerplanar graph is a planar graph with a planar 
embedding in which all vertices belong to the outer face. 
An outerplanar graph with such an embedding is called 
an outerplane graph. A graph is biconnected if removing any 
single vertex does not render the graph disconnected.

We write xy to denote a side of a polygon whose two 
end points are x and y. See Fig. 1 for an example of a con-
vex polygonal dual. Note that convex polygon G in Fig. 1(2) 
has four sides, namely, ag, g f , f e and ea. Note that the 

side ea consists of three segments (i.e., edges) (e, j), ( j, h)

and (h, a).
In a convex polygonal dual Gd , junction points are points 

that are endpoints of some segments in the drawing. For 
convenience, we write B J (Gd) and N J (Gd) to denote the 
sets of boundary and non-boundary junction points of Gd , 
respectively. In Fig. 1(2), there are 10 junction points with 
B J (Gd) = {a, b, c, d, e, f , g} and N J (Gd) = {h, i, j}. Note 
that c is interior to one side bd of the boundary polygon. 
The arrows in the drawing indicate 180◦ angles.

3. Convex polygonal duals of biconnected outerplane 
graphs

With respect to a t-TkR of a biconnected outerplane 
graph, we first prove the following lemma which gives an 
upper bound on the number of sides of the boundary poly-
gon (i.e., t):

Lemma 1. Let G be a biconnected outerplane graph. If G admits 
a t-TkR, then 3 ≤ t ≤ (k −1)|V (G)| −|E(G)| +1. Moreover, the 
equality t = (k −1)|V (G)| −|E(G)| +1 holds iff in the drawing,

(1) each polygon is exactly k-sided, and
(2) each non-boundary junction point is interior to a side of a 

polygon.

Proof. The t ≥ 3 is obvious since a polygon must have at 
least 3 sides. Let N be the total number of polygon corners 
in the t-TkR, say Gd , of G . For convenience, Gd is also re-
ferred to as a drawing. As each vertex in V (G) corresponds 
to a polygon (of at most k sides) in Gd , N ≤ k|V (G)|. Since 
G is a biconnected outerplane graph, each polygon must 
intersect the boundary of the drawing in one connected 
path or a point; otherwise, the vertex corresponding to 
that polygon will be a cut-vertex in G-violating the as-
sumption of G being biconnected. Since a path of s sides 
has s + 1 corners, when a k-sided polygon contains s sides 
on the boundary of the drawing, it has exactly k-s-1 cor-
ners located not along the boundary of the drawing Gd .

Let N = N O + NI , where N O denotes the total number 
of corners located along the boundary of the drawing (i.e., 
corners associated with boundary junction points), and NI

denotes the total numbers of corners located in the interior 
of the drawing (i.e., corners associated with non-boundary 
junction points). First, we show that N O ≥ |V (G)| + t . To 
see this, suppose Nv is the number of sides on the bound-
ary of the drawing that intersect with the polygon corre-
sponding to v . Note that a side can intersect with more 
than one polygon. For instance, in Fig. 1(2) NC = ND = 1
and the polygons corresponding to vertices C and D inter-
sect with side bcd. In view of above, N O = ∑

v∈V (G)(Nv +
1) = ∑

v∈V (G) Nv + |V (G)| ≥ t + |V (G)|.
For NI , we argue that NI ≥ ∑

p∈N J (Gd) deg(p) −
|N J (Gd)|. Since each junction point can be associated 
with at most one 180◦ angle, the number of 180◦ an-
gles at non-boundary junction points is at most |N J (Gd)|. 
Hence the above inequality holds. As we note that each 
of N J (Gd) corresponds to an inner face of G , according 
to Euler’s formula, |N J (Gd)| = |E(G)| − |V (G)| + 1. For the 
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