
Information Processing Letters 118 (2017) 17–20

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Merging almost sorted sequences yields a 24-sorter

Thorsten Ehlers

University of Kiel, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 March 2016
Received in revised form 17 August 2016
Accepted 17 August 2016
Available online 20 September 2016
Communicated by M. Chrobak

Keywords:
Parallel processing
Sorting networks
Theory of computation

We present a new sorting network on 24 channels, which uses only 12 layers, improving 
the previously best known bound by one layer. By monotonicity, this also implies improved 
sorting networks for 23 channels. This result was obtained by combining techniques for 
generating prefixes of sorting networks with propositional encodings.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Comparison based sorting algorithms like Quicksort 
perform a sequence of compare operations which depends 
on the input data. Contrary to this, data oblivious sort-
ing algorithms perform comparisons in a predefined way. 
This makes them relevant for parallel sorting algorithms: 
Any two compare-and-swap operations that are performed 
on disjoint inputs may be done in parallel, e.g. if imple-
mented on a FPGA, sets of independent comparisons can 
be done in parallel in one stage of a pipelined design [1]. 
It is common to present oblivious sorting algorithms as 
sorting networks [2], cf. Fig. 1.

On the left hand side, the input vector (5, 4, 3, 2, 1) is 
attached to the horizontal lines, denoted channels. Com-
parators are shown as vertical lines connecting two chan-
nels. Each comparator compares the values on its input 
channels, and sorts them non-decreasingly. The dashed 
lines separate layers of the sorting network: all compara-
tors within one layer touch pairwise disjoint channels, 
therefore they can work in parallel. Thus the number of 
layers determines the number of parallel sorting steps re-
quired to sort an input, so networks with fewer layers are 
faster.

E-mail address: the@informatik.uni-kiel.de.

Fig. 1. A sorting network on 5 channels with input (5,4,3,2,1).

2. Background and related work

Trivial algorithms like Bubble Sort are oblivious, but re-
quire O(n2) comparisons. Batcher suggested two ways of 
construction sorting networks, Odd–Even–Mergesort and 
Bitonic Mergesort [2,3], both with O(n log2(n)) compar-
isons in O(log2(n)) layers. This asymptotic bound was 
improved by Ajtai, Komlós and Szemerédi, who showed 
that oblivious sorting algorithms exist which only need 
O(n log(n)) comparisons in O(log(n)) layers [4], which is 
asymptotically optimal. Unfortunately, the constants hid-
den in the O-notation are huge, which makes Batchers 
sorting networks superior for every practical number of 
inputs.

There exist different metrics for describing properties 
of sorting networks. The size of a sorting network mea-
sures the number of comparators required, and is lower-

http://dx.doi.org/10.1016/j.ipl.2016.08.005
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.08.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:the@informatik.uni-kiel.de
http://dx.doi.org/10.1016/j.ipl.2016.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.08.005&domain=pdf


18 T. Ehlers / Information Processing Letters 118 (2017) 17–20

Table 1
Optimal depth (dn) of sorting networks on n inputs, for n ≤ 12.

n 1 2 3 4 5 6 7 8 9 10 11 12

dn 0 1 3 3 5 5 6 6 7 7 8 8

Table 2
Best known values and bounds on optimal depth (dn) of sorting networks 
on n inputs, for 13 ≤ n ≤ 24. The contributions of this paper are shown in 
boldface. Note that the new result for n = 24 also implies one for n = 23: 
Removing one channel, and all connected comparators, yields a sorting 
network on 23 channels.

n 13 14 15 16 17 18 19 20 21 22 23 24

dn 9 9 9 9 10
11 11 11 12 12 12 12
10 10 10 10 10 10 10

bounded by O(n log(n)), as sorting networks sort based on 
comparisons. Optimal sorting networks are known only for 
at most 10 inputs [5], some upper bounds can be found 
in [6].

This paper focusses on the depth of sorting networks 
rather than their size. In 1973, Knuth summarised upper 
bounds on the depth of sorting networks on n ≤ 16 chan-
nels [7], cf. Table 1 and 2. In 1989, Parberry used a SAT-
based approach together with a symmetry break on the 
first layer to prove that the bounds for n ≤ 10 are opti-
mal [8]. This was pushed further by Bundala and Závodný 
in 2014 [9]. Using a decomposition and symmetry breaking 
approach for the first two layers combined with SAT solv-
ing, they were able to prove that the bounds for n ≤ 16 are 
optimal. Al-Baddar and Batcher developed a tool to analyse 
prefixes, i.e. some layers on the left hand side of a sort-
ing network, which allowed them to hand-craft improved 
sorting networks for 18 and 22 channels [10]. Ehlers and 
Müller used a SAT solver to extend handcrafted prefixes, 
and found faster sorting networks for 17, 19 and 20 chan-
nels [11].

The SAT encodings used were not strong enough to 
prove optimality for any new case. Codish et al. intro-
duced symmetry breaks for the last layers of a sorting net-
work [12]. Ehlers and Müller suggested an improved SAT 
encoding, and re-ordered the channels of sorting networks, 
which can be used to reduce the number of variables in 
the SAT encoding, allowing to prove that 10 layers are op-
timal when sorting 17 inputs [13].

The purpose of this paper is to show this combination 
of techniques, and the presentation of better sorting net-
works on 24 channels. For details on the propositional en-
coding of sorting networks we refer to [9,13]. Techniques 
to generate sets of prefixes up to symmetries can be found 
in [9,5].

3. Construction of new sorting networks

The sorting networks suggested by Batcher can be con-
structed algorithmically [3], but they are not optimal for 
n > 8 channels. The sorting networks for n > 8 shown 
in [2] are handcrafted, and can be used as base cases for 
merging based algorithms.

Bundala and Závodný generated sets of Pareto-optimal 
prefixes on 2 layers and checked, using a SAT solver, which 
of these can be extended to a sorting network of some 

Fig. 2. Prefix of a sorting network on 12 channels, and 5 layers.

depth. Here, one prefix p1 is considered superior to an-
other prefix p2 if every sorting network beginning with p2
can be transformed into one beginning with p1. In [11], 
Ehlers and Müller handcrafted prefixes, mainly based on 
so-called green filters [14] and used a SAT solver to extend 
these to a full sorting network.

All these approaches are somewhat limited: Handcraft-
ing sorting networks is limited by the ability of a hu-
man to understand sorting networks. Current SAT-based 
approaches do not scale well, and generating all prefixes 
yields huge sets to test, even when symmetries are con-
sidered [5]. We therefore used a combination of these ap-
proaches. First, we generate the prefix of a sorting network 
on 12 channels which almost sorts its inputs. As it seems 
intractable to consider all such prefixes, we use a greedy 
approach: given some prefixes on k layers, we generate all 
Pareto-optimal prefixes on k + 1 layers up to symmetries, 
and keep only the 32 offsprings which yield a minimum 
number of outputs. Iterating this process gives the prefix 
on 5 layers shown in Fig. 2, which has 34 different output 
vectors.

Next, we create a prefix on 24 channels consisting of 
two prefixes on 12 channels, and add two comparators to 
their last layer which connect unused channels. This gives 
a total of 1, 129 outputs which remain to be sorted by the 
remainder of the network, which is a tractable size for a 
SAT solver. This prefix was permuted to minimise the SAT 
encoding used lateron. The formula to solve has 56, 949
variables and 1, 164, 158 clauses, and can be solved by 
MiniSAT [15] in less than 7 hours on an Intel i7-4770HQ 
CPU.

The generated sorting network is presented in Fig. 3. 
Due to the permutation of the channels, it is hard to un-
derstand its structure. Therefore, we present an alternative 
version in Fig. 4. Here, we permuted the channels such 
that the original prefix was restored, and removed redun-
dant comparators. In this presentation, the structure in the 
first 5 layers becomes visible again. Interestingly, the 6th 
layer, which was generated by the SAT solver, is very simi-
lar to the first layers of a merge step in Batcher’s construc-
tion [2].

The sorting network in Fig. 4 has 125 comparators. Al-
though improving the upper bound on the depth, it does 
not improve the upper bounds on the size of sorting net-
works, as networks with 123 and 118 comparators for 24
and 23 inputs, respectively, are known [6].



Download English Version:

https://daneshyari.com/en/article/4950914

Download Persian Version:

https://daneshyari.com/article/4950914

Daneshyari.com

https://daneshyari.com/en/article/4950914
https://daneshyari.com/article/4950914
https://daneshyari.com

