Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Periodicity in rectangular arrays

Guilhem Gamard^a, Gwenaël Richomme^{a,b}, Jeffrey Shallit^{c,*}, Taylor J. Smith^c

^a LIRMM, CNRS, Univ. Montpellier, UMR 5506, CC 477, 161 rue Ada, 34095 Montpellier Cedex 5, France

^b Univ. Paul-Valéry Montpellier 3, Route de Mende, 34199 Montpellier Cedex 5, France

^c School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

ARTICLE INFO

Article history: Received 22 February 2016 Received in revised form 1 July 2016 Accepted 21 September 2016 Available online 30 September 2016 Communicated by M. Chrobak

Keywords: Formal languages Theory of computation Algorithms

ABSTRACT

We discuss several two-dimensional generalizations of the familiar Lyndon-Schützenberger periodicity theorem for words. We consider the notion of primitive array (as one that cannot be expressed as the repetition of smaller arrays). We count the number of $m \times n$ arrays that are primitive. Finally, we show that one can test primitivity and compute the primitive root of an array in linear time.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let Σ be a finite alphabet. One very general version of the famous Lyndon-Schützenberger theorem [18] can be stated as follows:

Theorem 1. Let $x, y \in \Sigma^+$. Then the following five conditions are equivalent:

(1) xy = yx;

(2) There exist $z \in \Sigma^+$ and integers $k, \ell > 0$ such that $x = z^k$ and $y = z^{\ell}$;

(3) There exist integers i, j > 0 such that $x^i = y^j$;

- (4) There exist integers r, s > 0 such that $x^r y^s = y^s x^r$;
- (5) $x\{x, y\}^* \cap y\{x, y\}^* \neq \emptyset$.

Proof. For a proof of the equivalence of (1), (2), and (3), see, for example [23, Theorem 2.3.3].

Condition (5) is essentially the "defect theorem"; see, for example, [17, Cor. 1.2.6].

Corresponding author. E-mail addresses: guilhem.gamard@lirmm.fr (G. Gamard), gwenael.richomme@lirmm.fr (G. Richomme), shallit@cs.uwaterloo.ca (J. Shallit), tj2smith@uwaterloo.ca (T.J. Smith).

http://dx.doi.org/10.1016/j.ipl.2016.09.011 0020-0190/© 2016 Elsevier B.V. All rights reserved.

For completeness, we now demonstrate the equivalence of (4) and (5) to each other and to conditions (1)–(3):

(3) \implies (4): If $x^i = y^j$, then we immediately have $x^r y^s =$ $y^{s}x^{r}$ with r = i and s = j.

(4) \implies (5): Let $z = x^r y^s$. Then by (4) we have $z = y^s x^r$. So $z = xx^{r-1}y^s$ and $z = yy^{s-1}x^r$. Thus $z \in x\{x, y\}^*$ and $z \in$ $y\{x, y\}^*$. So $x\{x, y\}^* \cap y\{x, y\}^* \neq \emptyset$.

 $(5) \implies (1)$: By induction on the length of |xy|. The base case is |xy| = 2. More generally, if |x| = |y| then clearly (5) implies x = y and so (1) holds. Otherwise without loss of generality |x| < |y|. Suppose $z \in x\{x, y\}^*$ and $z \in y\{x, y\}^*$. Then x is a proper prefix of y, so write y = xw for a nonempty word w. Then z has prefix xx and also prefix *xw*. Thus $x^{-1}z \in x\{x, w\}^*$ and $x^{-1}z \in w\{x, w\}^*$, where by $x^{-1}z$ we mean remove the prefix x from z. So $x\{x, w\}^* \cap$ $w\{x, w\}^* \neq \emptyset$, so by induction (1) holds for x and w, so xw = wx. Then yx = (xw)x = x(wx) = xy. \Box

A nonempty word z is primitive if it cannot be written in the form $z = w^e$ for a word *w* and an integer $e \ge 2$. We will need the following fact (e.g., [17, Prop. 1.3.1] or [23, Thm. 2.3.4]):

Fact 2. Given a nonempty word *x*, the shortest word *z* such that $x = z^i$ for some integer $i \ge 1$ is primitive. It is called the *primitive root* of *x*, and is unique.

In this paper we consider generalizations of the Lyndon–Schützenberger theorem and the notion of primitivity to two-dimensional rectangular arrays (sometimes called *pic-tures* in the literature). For more about basic operations on these arrays, see, for example, [11].

2. Rectangular arrays

By $\Sigma^{m \times n}$ we mean the set of all $m \times n$ rectangular arrays A of elements chosen from the alphabet Σ . Our arrays are indexed starting at position 0, so that A[0, 0] is the element in the upper left corner of the array A. We use the notation $A[i..j, k..\ell]$ to denote the rectangular subarray with rows i through j and columns k through ℓ . If $A \in \Sigma^{m \times n}$, then |A| = mn is the number of entries in A.

We also generalize the notion of powers as follows. If $A \in \Sigma^{m \times n}$ then by $A^{p \times q}$ we mean the array constructed by repeating A pq times, in p rows and q columns. More formally $A^{p \times q}$ is the $pm \times qn$ array B satisfying $B[i, j] = A[i \mod m, j \mod n]$ for $0 \le i < pm$ and $0 \le j < qn$. For example, if

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix},$$

then

a	b	С	а	b	С	а	b	С	
d	е	f	d	е	f	d	е	f	
a	b	С	а	b	С	а	b	С	•
d	е	f	d	е	f	d	е	f	
	a d a d	a b d e a b d e	abc def abc def	a b c a d e f d a b c a d e f d	a b c a b d e f d e a b c a b d e f d e	a b c a b c d e f d e f a b c a b c d e f d e f	a b c a b c a d e f d e f d a b c a b c a d e f d e f d	a b c a b c a b d e f d e f d e a b c a b c a b d e f d e f d e	a b c a b c a b c d e f d e f d e f a b c a b c a b c d e f d e f d e f

We can also generalize the notation of concatenation of arrays, but now there are two annoyances: first, we need to decide if we are concatenating horizontally or vertically, and second, to obtain a rectangular array, we need to insist on a matching of dimensions.

If *A* is an $m \times n_1$ array and *B* is an $m \times n_2$ array, then by $A \oplus B$ we mean the $m \times (n_1 + n_2)$ array obtained by placing *B* to the right of *A*.

If *A* is an $m_1 \times n$ array and *B* is an $m_2 \times n$ array, then by $A \ominus B$ we mean the $(m_1 + m_2) \times n$ array obtained by placing *B* underneath *A*.

3. Generalizing the Lyndon–Schützenberger theorem

We now state our first generalization of the Lyndon– Schützenberger theorem to two-dimensional arrays, which generalizes claims (2), (3), and (4) of Theorem 1.

Theorem 3. Let A and B be nonempty arrays. Then the following three conditions are equivalent:

(a) There exist positive integers p_1, p_2, q_1, q_2 such that $A^{p_1 \times q_1} = B^{p_2 \times q_2}$.

(b) There exist a nonempty array C and positive integers r_1, r_2, s_1, s_2 such that $A = C^{r_1 \times s_1}$ and $B = C^{r_2 \times s_2}$.

(c) There exist positive integers t_1, t_2, u_1, u_2 such that $A^{t_1 \times u_1} \circ B^{t_2 \times u_2} = B^{t_2 \times u_2} \circ A^{t_1 \times u_1}$ where \circ can be either \oplus or \ominus .

Proof.

(a) \implies (b). Let A be an array in $\Sigma^{m_1 \times n_1}$ and B be an array in $\Sigma^{m_2 \times n_2}$ such that $A^{p_1 \times q_1} = B^{p_2 \times q_2}$. By dimensional considerations we have $m_1p_1 = m_2p_2$ and $n_1q_1 = n_2q_2$. Define $P = A^{p_1 \times 1}$ and $Q = B^{p_2 \times 1}$. We have $P^{\hat{1} \times q_1} = Q^{1 \times q_2}$. Viewing *P* and *Q* as words over $\Sigma^{m_1p_1 \times 1}$ and considering horizontal concatenation, this can be written $P^{q_1} = Q^{q_2}$. By Theorem 1 there exist a word *R* over $\Sigma^{m_1p_1 \times 1}$ and integers s_1, s_2 such that $P = R^{1 \times s_1}$ and $O = R^{1 \times s_2}$. Let *r* denote the number of columns of *R* and let $S = A[0...m_1 - m_1]$ 1, 0...r - 1] and $T = B[0...m_2 - 1, 0...r - 1]$. Observe $A = S^{1 \times s_1}$ and $B = T^{1 \times s_2}$. Considering the *r* first columns of *P* and *Q*, we have $S^{p_1 \times 1} = T^{p_2 \times 1}$. Viewing *S* and *T* as words over $\Sigma^{1 \times r}$ and considering vertical concatenation, we can rewrite $S^{p_1} = T^{p_2}$. By Theorem 1 again, there exist a word *C* over $\Sigma^{1 \times r}$ and integers r_1, r_2 such that $S = C^{r_1 \times 1}$ and $T = C^{r_2 \times 1}$. Therefore, $A = C^{r_1 \times s_1}$ and $B = C^{r_2 \times s_2}$.

(b) \implies (c). Without loss of generality, assume that the concatenation operation is \oplus . Let us recall that $A = C^{r_1 \times s_1}$ and $B = C^{r_2 \times s_2}$. Take $t_1 = r_2$ and $t_2 = r_1$ and $u_1 = s_2$ and $u_2 = s_1$. Then we have

$$A^{t_{1} \times u_{1}} \bigoplus B^{t_{2} \times u_{2}}$$

= $C^{r_{1}t_{1} \times s_{1}u_{1}} \bigoplus C^{r_{2}t_{2} \times s_{2}u_{2}}$
= $C^{r_{1}t_{1} \times (s_{1}u_{1} + s_{2}u_{2})}$ (Observe that $r_{1}t_{1} = r_{2}t_{2}$)
= $C^{r_{2}t_{2} \times s_{2}u_{2}} \bigoplus C^{r_{1}t_{1} \times s_{1}u_{1}}$
= $B^{t_{2} \times u_{2}} \bigoplus A^{t_{1} \times u_{1}}$.

(c) \implies (a). Without loss of generality, assume that the concatenation operation is \bigcirc . Assume the existence of positive integers t_1, t_2, u_1, u_2 such that

$$A^{t_1 \times u_1} \oplus B^{t_2 \times u_2} = B^{t_2 \times u_2} \oplus A^{t_1 \times u_1}.$$

An immediate induction allows to prove that for all positive integers i and j,

$$A^{t_1 \times iu_1} \oplus B^{t_2 \times ju_2} = B^{t_2 \times ju_2} \oplus A^{t_1 \times iu_1}.$$

$$\tag{1}$$

Assume that *A* is in $\Sigma^{m_1 \times n_1}$ and *B* is in $\Sigma^{m_2 \times n_2}$. For $i = n_2 u_2$ and $j = n_1 u_1$, we get $i u_1 n_1 = j u_2 n_2$. Then, by considering the first $i u_1 n_1$ columns of the array defined in (1), we get $A^{t_1 \times i u_1} = B^{t_2 \times j u_2}$. \Box

Note that generalizing condition (1) of Theorem 1 requires considering arrays with the same number of rows or same number of columns. Hence the next result is a direct consequence of the previous theorem.

Corollary 4. Let A, B be nonempty rectangular arrays. Then (a) if A and B have the same number of rows, $A \oplus B = B \oplus A$ if and only if there exist a nonempty array C and integers $e, f \ge 1$ such that $A = C^{1 \times e}$ and $B = C^{1 \times f}$;

(b) if A and B have the same number of columns, $A \ominus B = B \ominus A$ if and only if there exist a nonempty array C and integers $e, f \ge 1$ such that $A = C^{e \times 1}$ and $B = C^{f \times 1}$. Download English Version:

https://daneshyari.com/en/article/4950921

Download Persian Version:

https://daneshyari.com/article/4950921

Daneshyari.com