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We discuss several two-dimensional generalizations of the familiar Lyndon–Schützenberger 
periodicity theorem for words. We consider the notion of primitive array (as one that 
cannot be expressed as the repetition of smaller arrays). We count the number of m × n
arrays that are primitive. Finally, we show that one can test primitivity and compute the 
primitive root of an array in linear time.
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1. Introduction

Let � be a finite alphabet. One very general version of 
the famous Lyndon–Schützenberger theorem [18] can be 
stated as follows:

Theorem 1. Let x, y ∈ �+ . Then the following five conditions 
are equivalent:

(1) xy = yx;
(2) There exist z ∈ �+ and integers k, � > 0 such that x = zk

and y = z�;
(3) There exist integers i, j > 0 such that xi = y j ;
(4) There exist integers r, s > 0 such that xr ys = ysxr ;
(5) x{x, y}∗ ∩ y{x, y}∗ �= ∅.

Proof. For a proof of the equivalence of (1), (2), and (3), 
see, for example [23, Theorem 2.3.3].

Condition (5) is essentially the “defect theorem”; see, 
for example, [17, Cor. 1.2.6].
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For completeness, we now demonstrate the equivalence 
of (4) and (5) to each other and to conditions (1)–(3):

(3) =⇒ (4): If xi = y j , then we immediately have xr ys =
ysxr with r = i and s = j.

(4) =⇒ (5): Let z = xr ys . Then by (4) we have z = ysxr . 
So z = xxr−1 ys and z = yys−1xr . Thus z ∈ x{x, y}∗ and z ∈
y{x, y}∗ . So x{x, y}∗ ∩ y{x, y}∗ �= ∅.

(5) =⇒ (1): By induction on the length of |xy|. The base 
case is |xy| = 2. More generally, if |x| = |y| then clearly (5) 
implies x = y and so (1) holds. Otherwise without loss of 
generality |x| < |y|. Suppose z ∈ x{x, y}∗ and z ∈ y{x, y}∗ . 
Then x is a proper prefix of y, so write y = xw for a 
nonempty word w . Then z has prefix xx and also prefix 
xw . Thus x−1z ∈ x{x, w}∗ and x−1z ∈ w{x, w}∗ , where by 
x−1z we mean remove the prefix x from z. So x{x, w}∗ ∩
w{x, w}∗ �= ∅, so by induction (1) holds for x and w , so 
xw = wx. Then yx = (xw)x = x(wx) = xy. �

A nonempty word z is primitive if it cannot be written 
in the form z = we for a word w and an integer e ≥ 2. We 
will need the following fact (e.g., [17, Prop. 1.3.1] or [23, 
Thm. 2.3.4]):
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Fact 2. Given a nonempty word x, the shortest word z such 
that x = zi for some integer i ≥ 1 is primitive. It is called 
the primitive root of x, and is unique.

In this paper we consider generalizations of the Lyndon–
Schützenberger theorem and the notion of primitivity to 
two-dimensional rectangular arrays (sometimes called pic-
tures in the literature). For more about basic operations on 
these arrays, see, for example, [11].

2. Rectangular arrays

By �m×n we mean the set of all m × n rectangular ar-
rays A of elements chosen from the alphabet �. Our arrays 
are indexed starting at position 0, so that A[0, 0] is the 
element in the upper left corner of the array A. We use 
the notation A[i.. j, k..�] to denote the rectangular subar-
ray with rows i through j and columns k through �. If 
A ∈ �m×n , then |A| = mn is the number of entries in A.

We also generalize the notion of powers as follows. If 
A ∈ �m×n then by Ap×q we mean the array constructed 
by repeating A pq times, in p rows and q columns. More 
formally Ap×q is the pm × qn array B satisfying B[i, j] =
A[i mod m, j mod n] for 0 ≤ i < pm and 0 ≤ j < qn. For 
example, if

A =
[
a b c
d e f

]
,

then

A2×3 =

⎡
⎢⎢⎣
a b c a b c a b c
d e f d e f d e f
a b c a b c a b c
d e f d e f d e f

⎤
⎥⎥⎦ .

We can also generalize the notation of concatenation of 
arrays, but now there are two annoyances: first, we need 
to decide if we are concatenating horizontally or vertically, 
and second, to obtain a rectangular array, we need to insist 
on a matching of dimensions.

If A is an m × n1 array and B is an m × n2 array, then 
by A � B we mean the m × (n1 + n2) array obtained by 
placing B to the right of A.

If A is an m1 × n array and B is an m2 × n array, then 
by A 
 B we mean the (m1 + m2) × n array obtained by 
placing B underneath A.

3. Generalizing the Lyndon–Schützenberger theorem

We now state our first generalization of the Lyndon–
Schützenberger theorem to two-dimensional arrays, which 
generalizes claims (2), (3), and (4) of Theorem 1.

Theorem 3. Let A and B be nonempty arrays. Then the follow-
ing three conditions are equivalent:

(a) There exist positive integers p1, p2, q1, q2 such that 
Ap1×q1 = B p2×q2 .

(b) There exist a nonempty array C and positive integers 
r1, r2, s1, s2 such that A = Cr1×s1 and B = Cr2×s2 .

(c) There exist positive integers t1, t2, u1, u2 such that 
At1×u1 ◦ Bt2×u2 = Bt2×u2 ◦ At1×u1 where ◦ can be either �

or 
.

Proof.
(a) =⇒ (b). Let A be an array in �m1×n1 and B be an ar-
ray in �m2×n2 such that Ap1×q1 = B p2×q2 . By dimensional 
considerations we have m1 p1 = m2 p2 and n1q1 = n2q2. De-
fine P = Ap1×1 and Q = B p2×1. We have P 1×q1 = Q 1×q2 . 
Viewing P and Q as words over �m1 p1×1 and considering 
horizontal concatenation, this can be written P q1 = Q q2 . 
By Theorem 1 there exist a word R over �m1 p1×1 and in-
tegers s1, s2 such that P = R1×s1 and Q = R1×s2 . Let r de-
note the number of columns of R and let S = A[0 . . .m1 −
1, 0 . . . r − 1] and T = B[0 . . .m2 − 1, 0 . . . r − 1]. Observe 
A = S1×s1 and B = T 1×s2 . Considering the r first columns 
of P and Q , we have S p1×1 = T p2×1. Viewing S and T as 
words over �1×r and considering vertical concatenation, 
we can rewrite S p1 = T p2 . By Theorem 1 again, there exist 
a word C over �1×r and integers r1, r2 such that S = Cr1×1

and T = Cr2×1. Therefore, A = Cr1×s1 and B = Cr2×s2 .

(b) =⇒ (c). Without loss of generality, assume that the 
concatenation operation is �. Let us recall that A = Cr1×s1

and B = Cr2×s2 . Take t1 = r2 and t2 = r1 and u1 = s2 and 
u2 = s1. Then we have

At1×u1 � Bt2×u2

= Cr1t1×s1u1 � Cr2t2×s2u2

= Cr1t1×(s1u1+s2u2) (Observe that r1t1 = r2t2)

= Cr2t2×s2u2 � Cr1t1×s1u1

= Bt2×u2 � At1×u1 .

(c) =⇒ (a). Without loss of generality, assume that the 
concatenation operation is �. Assume the existence of 
positive integers t1, t2, u1, u2 such that

At1×u1 � Bt2×u2 = Bt2×u2 � At1×u1 .

An immediate induction allows to prove that for all posi-
tive integers i and j,

At1×iu1 � Bt2× ju2 = Bt2× ju2 � At1×iu1 . (1)

Assume that A is in �m1×n1 and B is in �m2×n2 . For 
i = n2u2 and j = n1u1, we get iu1n1 = ju2n2. Then, by con-
sidering the first iu1n1 columns of the array defined in (1), 
we get At1×iu1 = Bt2× ju2 . �

Note that generalizing condition (1) of Theorem 1 re-
quires considering arrays with the same number of rows 
or same number of columns. Hence the next result is a di-
rect consequence of the previous theorem.

Corollary 4. Let A, B be nonempty rectangular arrays. Then
(a) if A and B have the same number of rows, A � B = B � A if 
and only if there exist a nonempty array C and integers e, f ≥ 1
such that A = C1×e and B = C1× f ;
(b) if A and B have the same number of columns, A 
 B = B 
 A
if and only if there exist a nonempty array C and integers 
e, f ≥ 1 such that A = Ce×1 and B = C f ×1 .
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