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The process of identifying faulty processors is called diagnosis of the system. Several mod-
els of diagnosis have been proposed, the most popular being the PMC (Preparata, Metze 
and Chien) diagnostic model proposed by Preparata et al. in 1967. The precise strategy 
correctly identifies all faulty processors while the pessimistic strategy isolates all faulty 
processors within a set containing at most one fault-free processor. For a multiproces-
sor system, diagnosability is critical to measure its performance. The enhanced optical 
transpose interconnection system (enhanced OTIS), network has important applications in 
parallel processing. In this network architecture, n2 processors are divided into n groups 
of n processors; processors in the same group are connected by electronic links while the 
groups are simultaneously connected by optical links. An enhanced OTIS network is regu-
lar if its base graph G is regular. In this paper, we discuss fault diagnosis in an enhanced 
OTIS network, including both the precise strategy and pessimistic strategy under the PMC 
diagnostic model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Even though improvement in technology has made it 
possible to realize very powerful multiprocessor systems, 
the bandwidth limitations imposed by electronic intercon-
nections prove to be a major bottleneck. Optical intercon-
nection networks would be better candidates than con-
ventional interconnection networks for multiprocessor sys-
tems. A popular realization of optical communication is 
the Optical Transpose Interconnection System (OTIS) [11]. 
OTIS networks have a base graph G , on n vertices, and 
consist of n disjoint copies of G . These copies are la-
belled G1, G2, . . . , Gn and the vertices of any copy are 
v1, v2, . . . , vn . The edges involved in any one of these 
copies of G are intended to model electronic connections 
whereas additional edges, from vertex vi of copy G j to ver-
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tex v j of copy Gi , for every i, j ∈ {1, 2, . . . , n}, with i �= j, 
are intended to model optical connections. The resulting 
OTIS network is denoted O T I S(G). One slightly displeasing 
aspect of OTIS networks is that no matter what the base 
graph G is, the corresponding OTIS network O T I S(G) can-
not be regular. We note that there is no optical link from 
the node vi of Gi for any copy of Gi in O T I S(G). Several 
studies of OTIS architecture have been proposed [2,14,15]. 
In order to improve the regularity of OTIS networks, en-
hanced OTIS networks were proposed by Das in 2007 [4]. 
Enhanced OTIS networks retain the corresponding OTIS as 
a subgraph and thus have almost all the desirable proper-
ties of the corresponding OTIS but contain additional op-
tical links. Several advantages are gained by adding those 
extra links, namely uniform node degree, increased diag-
nosability, and improved fault-tolerance. These advantages 
make enhanced OTIS a suitable architecture for multipro-
cessor interconnection networks.

The process of identifying faulty processors is called di-
agnosis of the system. The PMC diagnostic model proposed 
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by Preparata, Metze and Chien [17] is the most popu-
lar diagnostic model. In this model, every processor per-
forms tests on its neighbors based on the communication 
links between them. When one processor tests another, 
the tester declares the tested processor to be fault-free or 
faulty depending on the test response; the result is always 
accurate if the tester is fault-free, but if the tester is faulty, 
the result is unreliable. According to the traditional precise 
diagnosis strategy, all processors must be identified cor-
rectly. A system is t-diagnosable if all faulty processors can 
be identified under the precise strategy provided that the 
number of faults presented does not exceed t . The max-
imum number of faulty processors that the system can 
guarantee to identify is called the diagnosability of the 
system. The pessimistic diagnosis strategy proposed by Ka-
vianpour and Friedman [8] is a process of diagnosing faults 
that allows all faulty processors to be isolated within a 
set having at most one fault-free processor. A system is 
t1/t1-diagnosable if, provided the number of faulty proces-
sors is bounded by t1, all faulty processors can be isolated 
within a set of size at most t1 with at most one fault-
free node mistaken as a faulty one. Numerous studies have 
been dedicated to the PMC model [3,5,7,12,13,16,18,19].

In this paper, we show that an enhanced OTIS net-
work with base graph G which has even number of nodes 
and degree t ≥ 2 is (t + 1)-diagnosable, and (t1 + 2)/

(t1 + 2)-diagnosable if G is a t1/t1-diagnosable regular 
graph. Our paper is organized as follows: In Section 2, 
we introduce graph theory terminology and fundamental 
properties. In Section 3, the precise diagnosability and pes-
simistic diagnosability of enhanced optical transpose in-
terconnection system networks under the PMC model are 
evaluated. Finally, we give a conclusion in Section 4.

2. Preliminaries

The underlying topology of a multiprocessor system is 
usually represented by a graph G = (V , E), where each 
of the vertices u ∈ V denotes a processor and each edge 
(u, v) ∈ E denotes an undirected communication link from 
processor u to processor v . Throughout this paper, three 
terms – network, system, and graph – will be used inter-
changeably. A loop edge is an edge for which the two end-
points are the same vertex. Two edges are multiple edges 
if they have exactly the same two endpoints. A graph is 
simple if it does not contain loop edges or multiple edges. 
In this paper, we focus on simple graphs. For graph theory 
terminology and notation not defined here, we follow [9].

Let G = (V , E) be a graph. For a vertex u ∈ V (G), 
we define NG(u) to be the set of vertices adjacent to u. 
The size of NG(u) is called the degree of u denoted by 
degG(u). In addition, the degree of a graph G is defined 
as δ(G) = minu∈V degG(u). For a vertex set U ⊆ V (G), let 
NG(U ) = ⋃

u∈U NG(u) \ U . If |NG(u)| = k for any vertex 
u in G , then G is called a k-regular graph. A graph H =
(V ′, E ′) is a subgraph of G = (V , E) if V ′ ⊆ V and E ′ ⊆ E . 
The components of a graph G are its maximal connected 
subgraphs. A component is trivial if it has no edges; oth-
erwise, it is nontrivial. In addition, for a vertex set S ⊆ V , 
the notation G − S means the graph obtained by deleting 

all the vertices in S from G and all edges in G connected 
to S .

Optical transmissions, owing to its inherent parallelism, 
high spectral and spatial bandwidth, low latency and signal 
crosstalk, reduced power consumption and desirable topo-
logical properties [6], possesses the potential to be a bet-
ter solution to several communication problems in paral-
lel and distributed computing. Optical interconnection net-
works would be a better candidate than conventional in-
terconnection networks for multiprocessor systems. A pop-
ular realization of optical communication is the Optical 
Transpose Interconnection System (OTIS) [11]. The OTIS(G) 
network has a base graph G with n vertices and consists 
of n copies of G , namely G1, G2, . . . , Gn . Let the vertices 
of any copy be v1, v2, . . . , vn and add an edge connecting 
vi of copy G j to v j of Gi for 1 ≤ i, j ≤ n with i �= j. The 
formal definition of O T I S(G) is as follows.

Definition 1. Let G = (V , E) be an undirected graph. The 
O T I S(G) graph is an undirected graph given by:

V (O T I S(G)) = {〈v g, v p〉|v g, v p ∈ V (G)} and

E(O T I S(G))

= {(〈v g, vr〉, 〈v g, vs〉)|v g ∈ V (G), (vr, vs) ∈ E(G)}
∪ {(〈v g, v p〉, 〈v p, v g〉)|v g, v p ∈ V (G), and v g �= v p}.

Obviously, O T I S(G) is not regular no matter what the 
base graph G is. Therefore, in order to solve the prob-
lem of regularity, a variation of O T I S(G) called enhanced 
O T I S(G) was proposed in [4]. Given a base graph G with 
vertices set {v1, v2, . . . , vn}, the enhanced O T I S(G) de-
noted by E O T I S(G) is obtained from O T I S(G) by adding 
an edge from node 〈v g , v g〉 to 〈v g, v g〉, where 1 ≤ g ≤ n
and g = n − g + 1. For example, graphs O T I S(C4) and 
E O T I S(C4) are illustrated in Fig. 1. Obviously, E O T I S(G)

includes self-loop edges if G has odd number of nodes. 
Hence in this paper we will only consider the base graph 
G with an even number of nodes.

Therefore, E O T I S(G) is regular if its base graph G is 
regular, and the following lemma is obviously obtained.

Lemma 1. δ(E O T I S(G)) = δ(G) + 1.

Many diagnostic models of system-level diagnosis have 
been proposed in the literature [1,10,17]. Among these 
models, the most popular is the PMC diagnostic model (or 
PMC model for short) proposed by Preparata, Metze, and 
Chien [17]. Under the PMC model, a self-diagnosable sys-
tem G was often modelled by a digraph in which an arc 
direct from vertex u to vertex v means that u can test v . 
In this situation, u is a tester and v is a tested vertex. The 
edge orientation is based on unit type (test or tested unit). 
The directed edge (u, v), with binary weight σ(u, v), exists 
if and only if units u and v are interconnected and unit 
v (tested unit) is tested by unit u with binary outcome 
σ(u, v). The test outcome σ(u, v) is 0 (1) if u diagnoses 
v as fault-free (faulty). If u is faulty, then the outcome 
σ(u, v) is unreliable. The collection of all test outcomes 
is called a syndrome.
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