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A complementation operation on a vertex of a digraph changes all outgoing arcs into non-
arcs, and outgoing non-arcs into arcs. Given a digraph G , a partially complemented digraph G̃
is a digraph obtained from G by performing a sequence of vertex complement operations 
on G . Dahlhaus et al. showed that, given an adjacency-list representation of G̃ , depth-
first search (DFS) on G can be performed in O (n + m̃) time, where n is the number 
of vertices and m̃ is the number of edges in G̃ . This can be used for finding a depth-
first spanning forest and the strongly connected components of the complement of G
in time that is linear in the size of G , and Dahlhaus et al. give applications to finding 
the modular decomposition of an undirected graph that require that some adjacency lists 
be complemented and others not. To achieve this bound, their algorithm makes use of a 
somewhat complicated stack-like data structure to simulate the recursion stack, instead of 
implementing it directly as a recursive algorithm. We give a recursive O (n + m̃) algorithm 
that requires no such data-structures.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A complementation operation on a vertex of a digraph 
changes all outgoing arcs into non-arcs, and outgoing non-
arcs into arcs. A partially complemented representation G̃ of 
G is a digraph obtained from a sequence of vertex comple-
ment operations, starting with a digraph G , and marking 
the vertices that have been complemented. Let n denote 
the number of vertices and m denote the number of edges 
of G , and let m̃ denote the number of edges of G̃ . In [2], it 
is shown how to run several algorithms on G , given G̃ , in 
O (n + m̃) time. This can be sublinear in the size of G .

Their algorithm for DFS on partially complemented di-
graphs was notably more complicated than their algorithm 
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for BFS despite the comparable simplicity of DFS and BFS 
in the usual context.

Their algorithm for DFS is not recursive and is compli-
cated by the use of so-called complement stacks, a stack-like 
data structure used to simultaneously simulate the recur-
sion stack and keep track of which undiscovered vertices 
will not be called from which vertices on the recursion 
stack. This raised the question of whether there exists a 
more natural recursive DFS algorithm for partially com-
plemented digraphs. To this end, we give an elementary 
recursive O (n + m̃) algorithm for performing depth-first 
search on G , given G̃ .

A notable special case is when every vertex is comple-
mented, that is, G̃ = G where G denotes the complement 
of G . Algorithms for performing DFS on G , given G , have 
also been developed [6,7], the most efficient of which runs 
in O (n +m) time where n and m is the number of vertices 
and number edges of G respectively. To achieve this bound, 
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Fig. 1. Finding the modules that contain x in a graph where these modules are ordered by containment.

the algorithm in [6] makes use of the Gabow–Tarjan dis-
joint set data structure [4]. Our algorithm gives a more 
direct approach.

2. An application

A module of an undirected graph is a set Y of ver-
tices such that every vertex not in Y is either a neighbor 
of all vertices in Y or a neighbor of none of them. Ex-
amples are {a, x} and {a, b, c, d, x} in the graph in part 1
of Fig. 1. There is a canonical recursive decomposition of 
every undirected graph, called the modular decomposition, 
which implicitly represents all modules of a graph. This 
decomposition was first discovered by Gallai [5], and has 
many applications to combinatorial algorithms on graphs. 
An O (n2) algorithm for computing it is given in [3]. 
A much more complicated O (n + m) algorithm was later 
given in [8].

The algorithm of [3] chooses a vertex x, finds the set 
M of maximal modules that do not contain x, selects x
and one vertex from each member of M, forming an in-
duced subgraph G ′ = (V ′, E ′). It is not hard to show that 
all modules of G ′ of size greater than one contain x; they 
correspond to the ancestors of x in the modular decom-
position tree. It then recursively finds the modular decom-
position of the subgraph induced by M , for each M ∈ M, 
to find the subtrees rooted at siblings of ancestors in the 
modular decomposition, completing the modular decom-
position of G .

The only bottleneck to an O (m log n) bound for this 
simple approach is the problem of finding the modules 
of G ′ that properly contain x. Since they correspond to 
ancestors of x, we know that they are ordered by con-
tainment. Let (Y1, Y2, . . . , Yk) be this ordering, that is, 
{Y1, Y2, . . . , Yk} are the modules of G ′ that contain x, and 
for each i ∈ {1, 2, . . . , k − 1}, Yi ⊂ Yi+1. An example of such 
a G ′ is the one depicted in part 1 of Fig. 1, and Y1 = {x, a}, 
Y2 = {x, a, b, c, d}, Y3 = {x, a, b, c, d, e, f , g, h} and Y4 is the 
set of vertices of G ′ . These are depicted in Part 5 of the fig-
ure.

To find these, the algorithm of [3] constructs a directed 
a graph D(G ′) = (V ′ \ {x}, A), whose vertices are the ver-
tices of G ′ other than x, and where there is a directed edge 
from vertex y to vertex z if and only if y is adjacent to ex-
actly one of x and z in G ′ . Part 2 of Fig. 1 depicts D(G ′)
for the example graph G ′ . The following observation fol-
lows from the definition of D(G ′): A set Y of vertices of G ′
is a module if and only if Y \ {x} has no incoming directed edge 
from V ′ \ Y in D(G ′). A set Y is a module if and only if no 
vertex outside of Y fails to have a uniform relationship to 
members of Y , and this happens if and only if it has the 
same relationship to x as it does to all other members of 
Y , hence if and only if the condition of the observation 
applies.

From this observation, it is immediate that for each 
i ∈ {1, 2, . . . , k − 1}, Yi+1 \ Yi is a strongly connected com-
ponent of D(G ′). This is depicted in part 3 of the figure. 
Also, because these modules are ordered by containment, 
it is immediate from the observation that there must be a 
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