ELSEVIER

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

PTAS for minimum k-path vertex cover in ball graph

Zhao Zhang ^{a,*}, Xiaoting Li ^a, Yishuo Shi ^b, Hongmei Nie ^a, Yuqing Zhu ^c

- ^a College of Mathematics Physics and Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- ^b College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjaing, 830046, China
- ^c Department of Computer Science, California State University, Los Angeles, CA, USA

ARTICLE INFO

Article history: Received 15 February 2016 Received in revised form 15 November 2016 Accepted 16 November 2016 Available online 21 November 2016 Communicated by Ł. Kowalik

Keywords: Approximation algorithms k-path vertex cover Ball graph PTAS

ABSTRACT

A vertex set F is a k-path vertex cover (VCP_k) of graph G if every path of G on k vertices contains at least one vertex from F. A graph G is a d-dimensional ball graph if each vertex of G corresponds to a ball in \mathbb{R}^d , two vertices are adjacent in G if and only if their corresponding balls have nonempty intersection. The heterogeneity of a ball graph is defined to be r_{\max}/r_{\min} , where r_{\max} and r_{\min} are the largest radius and the smallest radius of those balls, respectively. In this paper, we present a PTAS for the minimum VCP_k problem in a ball graph whose heterogeneity is bounded by a constant.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Suppose G = (V, E) is a graph, where V and E are the vertex set and the edge set, respectively. A path on k vertices is called a k-path. A vertex subset $F \subseteq V$ is a k-path vertex cover (abbreviated as VCP_k) of G if every k-path of G is hit by F, that is, every k-path of G contains at least one vertex from F. In other words, F is VCP_k of G if and only if G - F does not contain k-path (or we say that G - F is P_k -free). In the $minimum\ VCP_k\ problem\ (MVCP_k)$, the goal is to find a VCP_k of the minimum cardinality. In particular, the minimum VCP_2 problem is exactly the minimum vertex cover problem, which is one of Karp's 21 NP-hard problems.

This paper studies approximation algorithm for $MVCP_k$ in ball graphs. In a *d-dimensional ball graph G*, each vertex corresponds to a ball in \mathbb{R}^d , two vertices are adjacent in *G* if and only if the two balls corresponding to them have nonempty intersection. In the following, we will not distinguish a ball and the vertex that it represents. The set

of balls corresponding to V(G) is called a geometric repre-

For a point $c \in \mathbb{R}^d$ and a positive real number r, we shall use Ball(c,r) to denote the ball with center c and radius r. On the other hand, given a ball B in \mathbb{R}^d , we shall use c_B and r_B to denote its center and its radius, respectively. For a collection \mathcal{B} of balls in \mathbb{R}^d , let $r_{\max}(\mathcal{B}) = \max\{r_B : B \in \mathcal{B}\}$ and $r_{\min}(\mathcal{B}) = \min\{r_B : B \in \mathcal{B}\}$. Call $h(\mathcal{B}) = r_{\max}(\mathcal{B})/r_{\min}(\mathcal{B})$ the heterogeneity of \mathcal{B} . When the collection \mathcal{B} is clear, we shall omit \mathcal{B} in the above notation for simplicity.

In this paper, for fixed integer k, we present a polynomial-time approximation scheme (PTAS) for the minimum VCP_k problem on a ball graph whose heterogeneity is bounded by a constant, that is, the performance ratio can achieve $(1+\varepsilon)$ for any fixed real number $\varepsilon>0$.

2. Related works

The concept of k-path vertex cover first appeared in [20] with a background in security protocol design. In a

sentation of G. In particular, a 2-dimensional ball graph is exactly a $disk\ graph$ which is widely studied in the literature. A disk graph in which all disks have the same radii is a $unit\ disk\ graph$.

For a point $c\in\mathbb{R}^d$ and a positive real number r, we

^{*} Corresponding author. E-mail address: hxhzz@163.com (Z. Zhang).

k-generalized Canvas scheme, data integrity is guaranteed by protecting some vertices such that each k-path has at least one protected vertex. Since protecting a vertex incurs more cost, it is desirable to minimize the number of protected vertices. This is exactly the minimum VCP_k problem.

It was proved by Brešar et al. [2] that $MVCP_k$ is NPhard for $k \ge 2$. Polynomial time algorithms are known for trees, cycles, complete graphs, even with weight [2,4]. Denote by ψ_k the minimum size of a VCP_k. Bounds for ψ_k were studied in [2,3,10,11]. Exact algorithms with exponential running time for MVCP₃ were studied in [6,12,29]. Parameterized algorithms for MVCP₃ were studied in [7,13, 24,28].

In the field of approximation algorithms for VCP_k , most studies also focus on the case that k = 3, 4. Kardoš et al. [12] presented a randomized approximation algorithm for MVCP₃ with an expected performance ratio 23/11. Using local ratio method [21] and primal-dual method [22], respectively, Tu et al presented 2-approximation algorithms for minimum weight VCP3 (MWVCP3). Tu et al. [17,23] also proved that even restricted to cubic graphs, MVCP3 and MVCP4 are still NP-hard, and presented a 1.57-approximation algorithm for MVCP3 and a 2-approximation algorithm for VCP₄ on cubic graphs (without weight).

Liu et al. [18] were the first to inject connectivity requirement into the study of MVCPk. A connected VCPk $(CVCP_k)$ is a VCP_k which induces a connected subgraph. For fixed integer k, Liu et al. presented a PTAS for the minimum CVCP_k problem on unit disk graph. Also on unit disk graph, Wang et al. [25] obtained a PTAS for the minimum weight CVCP₃ problem assuming a c-local condition. Later Wang et al. [26] proposed a weak c-local condition under which they obtained a PTAS for the minimum weight CVCP₃ problem on unit ball graph. All these papers used the method of partition and shifting. However, for a ball graph in which balls may have different radii, such a method does not work.

Also keeping in the track of connectivity requirement, Li et al. [16] gave a linear time algorithm for the minimum weight CVCPk problem on trees, based on which a k-approximation algorithm was proposed for the minimum CVCPk problem on a general graph with girth (the length of a shortest cycle) at least k.

The minimum weight VCP_k problem is a special case of the minimum weight vertex deletion problem [14,15], the goal of which is to find a minimum weight vertex set F such that G - F satisfies a specific property. Using local ratio method, Fujito [9] presented a unified approximation algorithm for such a problem with nontrivial and hereditary graph properties.

In this paper, we use the local search method to give a PTAS for $MVCP_k$ on a ball graph whose heterogeneity is bounded by a constant. Local search method was successfully used to provide PTAS for the minimum hitting set problem for geometric objects which are half spaces in \mathbb{R}^3 and admissible regions on the plane [19], the maximum independent set problem of admissible regions on the plane [5], and the minimum dominating set problem on disk graphs [8]. In this paper, we further explore the power of this method by considering the MVCP_k problem.

3. Preliminaries

For a vertex $v \in V(G)$, let $N_G(v)$ be the set of neighbors of v in G. For a subset of vertices $U \subseteq V(G)$, let $N_G(U) =$ $(\bigcup_{v \in U} N_G(v)) \setminus U$ denote the neighborhood of U.

In [31], Zhang et al. proved the following separator theorem for ball graph.

Theorem 3.1. Let $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ be a geometric representation of a d-dimensional ball graph G. Suppose there is a constant K such that every point in \mathbb{R}^d belongs to at most K members of \mathcal{B} . Then there exists a constant c depending only on d and K such that for any real number $b > (\frac{2c}{2^{1/d}-1})^d$, the vertex set of G can be partitioned into $A \cup V_1 \cup \cdots \cup V_t$ satisfying the following conditions:

- (i) t = O(n/b);
- (ii) there is no edge between any V_i and V_i for $i \neq j$;
- (iii) $|V_i| \le b$ for each $i = 1, \dots, t$; (iv) $|N(V_i) \cap A| \le b^{1-1/(2d)}$ for each $i = 1, \dots, t$; (v) $|A| = O(n/\sqrt[2d]{b})$.

A vertex set $U \subseteq V(G)$ is an independent set of graph G if no vertices in U are adjacent in G.

Lemma 3.2. Suppose G is a P_k -free graph. Then V(G) can be partitioned into at most (k-1) independent sets.

Proof. The lemma can be proved by induction on k. Since a P_2 -free graph is an independent set itself, the lemma is true for k = 2. Suppose $k \ge 3$ and G is P_k -free. Assume, without loss of generality, that a longest path in G has k-1 vertices. Let u_1 be an end of a (k-1)-path. If $G-u_1$ still contains a (k-1)-path, let u_2 be an end of the (k-1)1)-path. Then u_2 is independent with u_1 , since otherwise concatenating edge u_2u_1 with this (k-1)-path in $G-u_1$ will yield a k-path in G, contradicting that G is P_k -free. If $G - \{u_1, u_2\}$ still contains a (k-1)-path, let u_3 be an end of this (k-1)-path. Similarly as the above, $\{u_1, u_2, u_3\}$ is an independent set. Proceeding like this, when the remaining graph no longer contains a (k-1)-path, the above u_i 's form an independent set of G, denote it as U_1 . Now, $G - U_1$ is P_{k-1} -free. By induction hypothesis, $V(G) \setminus U_1$ can be partitioned into at most (k-2) independent sets. Together with U_1 , V(G) is partitioned into at most (k-1)independent sets. □

For a ball B in \mathbb{R}^d and a constant α , we use αB to denote the ball with center c_B and radius αr_B . For a set $\mathcal B$ of balls in \mathbb{R}^d , let $\alpha \mathcal{B} = \{\alpha B : B \in \mathcal{B}\}.$

Lemma 3.3. Suppose G is a ball graph in \mathbb{R}^d which is P_k -free, \mathcal{B} is a geometric representation of G, and α is a positive constant. Then any point in \mathbb{R}^d is contained in at most $(k-1)(\alpha h(\mathcal{B}) +$ 1)^d balls of $\alpha \mathcal{B}$.

Proof. By Lemma 3.2, the vertex set of G can be partitioned into $U_1 \cup ... \cup U_t$, where $t \le k-1$ and each U_i is an independent set. We claim that for any $i \in \{1, ..., t\}$, any

Download English Version:

https://daneshyari.com/en/article/4950945

Download Persian Version:

https://daneshyari.com/article/4950945

<u>Daneshyari.com</u>