Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A characterization of trees with equal independent domination and secure domination numbers

Zepeng Li^{a,b,*}, Jin Xu^{a,b}

^b School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

ARTICLE INFO

Article history: Received 16 December 2015 Received in revised form 15 September 2016 Accepted 16 November 2016 Available online 22 November 2016 Communicated by Ł. Kowalik

Keywords: Tree Independent domination number Secure domination number Combinatorial problems

1. Introduction

All graphs considered in this paper are simple and connected. Let G = (V, E) be a graph. A vertex in G is said to *dominate* itself and every vertex adjacent to it. A set $D \subseteq V$ is said to be a *dominating set* of G if every vertex not in D is adjacent to at least one vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G.

A set $S \subseteq V$ is *independent* if no two vertices in S are adjacent. A dominating set D of G is an independent dominating set (IDS) of G if D is independent. The independent domination number, denoted by i(G), is the minimum cardinality of an IDS in G. An IDS of G of cardinality i(G) is called an *i*-set of *G*. A set $D \subseteq V$ is a double dominating set of G if every vertex of $V \setminus D$ has at least two neighbors in D and the subgraph induced by D has no isolated vertex. The double domination number, denoted by $\gamma_{\times 2}(G)$, is the minimum cardinality of a double dominating set of G.

http://dx.doi.org/10.1016/j.ipl.2016.11.004 0020-0190/© 2016 Elsevier B.V. All rights reserved.

A dominating set D of a graph G is said to be a secure dominating set (SDS) if each vertex $u \in V \setminus D$ is adjacent to a vertex $v \in D$ such that $(D \setminus \{v\}) \cup \{u\}$ is a dominating set of G. The secure domination number, denoted by $\gamma_s(G)$, is the minimum cardinality of an SDS of G. An SDS of G of

cardinality $\gamma_s(G)$ is called a γ_s -set of G. The problem of secure domination was introduced by Cockayne et al. [8] and has been investigated in the literature [2–7,9–13]. Recently, Merouane and Chellali [12] proved that $i(T) \leq \gamma_s(T)$ for any tree T and proposed the following problem.

Problem 1.1. (Merouane and Chellali [12]) Characterize the trees T with $i(T) = \gamma_s(T)$.

In this paper, we give a characterization of the trees Twith $i(T) = \gamma_s(T)$.

2. Notations and preliminary results

For a graph G = (V(G), E(G)), we denote by $N_G(v) =$ $\{u \in V(G) : uv \in E(G)\}$ the open neighborhood of a vertex

^a Key Laboratory of High Confidence Software Technologies of Ministry of Education, Peking University, Beijing 100871, China

ABSTRACT

Let i(G) and $\gamma_s(G)$ be the independent domination number and secure domination number of a graph G, respectively. Merouane and Chellali (2015) [12] proved that $i(T) \leq \gamma_s(T)$ for any tree T and asked to characterize the trees T with $i(T) = \gamma_s(T)$. In this paper, we answer the question. We introduce three operations on trees and prove that any tree Twith $i(T) = \gamma_s(T)$ can be obtained by these operations.

© 2016 Elsevier B.V. All rights reserved.

CrossMark

^{*} Corresponding author. E-mail addresses: lizepeng@pku.edu.cn (Z. Li), jxu@pku.edu.cn (J. Xu).

 $v \in V(G)$. For a set $X \subseteq V(G)$, we denote by G[X] the subgraph of *G* induced by *X*. An *S*-external private neighbor of a vertex $v \in S$ is a vertex $u \in V(G) \setminus S$ which is adjacent to *v* but to no other vertex of *S*. The set of all *S*-external private neighbors of $v \in S$ is called the *S*-external private neighbor set of *v* and is denoted epn(v, S). The degree of *v* in *G*, denoted by $d_G(v)$, is the cardinality of its open neighborhood in *G*. The distance of two vertices *u* and *v* in *G*, denoted by $d_G(u, v)$, is the length of a shortest path between *u* and *v*. A vertex of degree one is called a *leaf*. A graph is trivial if it has a single vertex. Denote by P_n the path on *n* vertices.

Let *T* be a tree. If $u \in V(T)$ is not a leaf of *T* and $k = \min\{d_T(u, v) : v \in V(T) \text{ and } v \text{ is a leaf of } T\}$, then *u* is called a *k*-stem of *T*. A 1-stem is also called a *stem*. A stem *v* of *T* is called a *solid stem* if *v* is adjacent to at least $d_T(v) - 1$ leaves in *T*. A *pendent edge* of *T* is an edge incident to a leaf of *T*. For any edge $uv \in E(T)$, we denote by T_u^v the connected component of T - uv containing the vertex *u*. Obviously, T_u^v is a subtree of *T*.

Lemma 2.1. (Cockayne et al. [8]) A set $D \subseteq V$ is an SDS of a graph *G* if and only if for each $u \in V \setminus D$, there exists $v \in D$ such that $G[epn(v, D) \cup \{u, v\}]$ is complete.

Lemma 2.2. (Merouane and Chellali [12]) For every tree T, $i(T) \leq \gamma_s(T)$.

Note that Lemma 2.2 is obtained from the following two results.

Lemma 2.3. (Blidia et al. [1]) For every nontrivial tree T, $2i(T) \le \gamma_{\times 2}(T)$, with equality if and only if T has two disjoint *i*-sets.

Lemma 2.4. (*Merouane and Chellali* [12]) For every connected graph G, $\gamma_{\times 2}(G) \leq 2\gamma_5(G)$.

By Lemmas 2.3 and 2.4, we can immediately obtain the following result.

Corollary 2.5. Let *T* be a nontrivial tree. If $i(T) = \gamma_s(T)$, then *T* has two disjoint *i*-sets.

Now we give some properties of the secure domination of graphs, which are useful to characterize the structures of trees.

Lemma 2.6. Let *G* be a connected graph with at least three vertices. Then *G* has a γ_s -set containing all stems of *G*.

Proof. Let *D* be a γ_s -set of *G*. If *G* has no stem or *D* contains all stems of *G*, then *D* is a required γ_s -set of *G*. Otherwise, for any stem *x* of *G* such that $x \notin D$, since *D* is a dominating set of *G*, we know that each leaf adjacent to *x* belongs to *D*. So $(D \setminus \{y\}) \cup \{x\}$ is also a γ_s -set of *G*, where *y* is a leaf adjacent to *x* in *T*. By repeating this process, we can obtain a γ_s -set of *G* which contains all stems of *G*. \Box

Lemma 2.7. Let G_1 and G_2 be two subgraphs of a graph G such that $V(G_1) \cap V(G_2) = \emptyset$ and $V(G_1) \cup V(G_2) = V(G)$. If D_i is an SDS of G_i , where i = 1, 2, then $D_1 \cup D_2$ is an SDS of G.

Proof. For any $u \in V(G) \setminus (D_1 \cup D_2)$, we have $u \in V(G_j) \setminus D_j$, where j = 1 or 2. Since D_j is an SDS of G_j , by Lemma 2.1, there exists $v \in D_j$ such that the induced subgraph $G'_j = G_j[epn(v, D_j) \cup \{u, v\}]$ is complete. Note that D_{3-j} is an SDS of G_{3-j} , we obtain that $G'_j = G[epn(v, D_1 \cup D_2) \cup \{u, v\}]$. So $D_1 \cup D_2$ is an SDS of G by Lemma 2.1. \Box

Lemma 2.8. Let T_x^y be a subtree of T. If D is an SDS of T such that $x \in D$, then the restriction D_x of D to $V(T_x^y)$ is an SDS of T_x^y .

Proof. For any $u \in V(T_x^v) \setminus D_x$, since *D* is an SDS of *T*, by Lemma 2.1, there exists $v \in D$ such that $T[epn(v, D) \cup \{u, v\}]$ is complete. Note that such vertex *v* must in $V(T_x^y)$, so $T_x^y[epn(v, D_x) \cup \{u, v\}]$ is also complete. Therefore, D_x is an SDS of T_x^y . \Box

3. A characterization of the trees *T* with $i(T) = \gamma_s(T)$

Let *T* be a tree. If $|V(T)| \le 2$, then $i(T) = \gamma_s(T)$. Thus, in what follows, we only consider the case of $|V(T)| \ge 3$. We first need to prove the following useful result.

Lemma 3.1. Let *T* be a tree such that $i(T) = \gamma_s(T)$. Then any stem of *T* is adjacent to exactly one leaf.

Proof. Suppose that there exists a stem *x* of *T* which is adjacent to at least two leaves *y* and *z*. By Lemma 2.6, *T* has a γ_s -set containing all stems of *T*, denoted by *D*. Then at least one of *y* and *z*, say *y*, belongs to *D*. Let T' = T - y and $D' = D \setminus \{y\}$. Since $x \in D$, by Lemma 2.8 we obtain that D' is an SDS of T'. So $\gamma_s(T') \le |D| - 1$. On the other hand, for any γ_s -set D'_0 of T', $D'_0 \cup \{y\}$ is an SDS of *T* by Lemma 2.7. Then $\gamma_s(T) \le |D'_0| + 1 = \gamma_s(T') + 1$. So $\gamma_s(T') = |D| - 1 = \gamma_s(T) - 1$.

Now we prove that i(T') = i(T) - 1. Let D'_1 be an *i*-set of T'. If $x \in D'_1$, then D'_1 is an IDS of T; otherwise, $D'_1 \cup \{y\}$ is an IDS of T. So $i(T) \le |D'_1| + 1 = i(T') + 1$. Note that $i(T) = \gamma_s(T)$ and $i(T') \le \gamma_s(T')$ by Lemma 2.2, we have $i(T') \le i(T) - 1$. So i(T') = i(T) - 1.

Therefore, $\gamma_s(T') = \gamma_s(T) - 1 = i(T) - 1 = i(T')$. It follow from Corollary 2.5 that T' has two disjoint *i*-sets. Since for any IDS of T', the vertex z is dominated only by x or z, so there exists an *i*-set of T' containing x, denoted by D'_1 . We can see that D'_1 is also an IDS of T. Thus, $i(T) \le |D'_1| = i(T')$, a contradiction. \Box

As a straightforward consequence of Lemma 3.1, we have:

Corollary 3.2. Let *T* be a tree and *x* be a solid stem of *T*. If $i(T) = \gamma_s(T)$, then $d_T(x) = 2$.

Lemma 3.3. Let T be a tree such that $i(T) = \gamma_s(T)$, x be a solid stem and y be the unique leaf adjacent to x in T. For any γ_s -set D of T, if $x \in D$, then $y \notin D$.

Download English Version:

https://daneshyari.com/en/article/4950946

Download Persian Version:

https://daneshyari.com/article/4950946

Daneshyari.com