A characterization of trees with equal independent domination and secure domination numbers

Zepeng $\mathrm{Li}^{\mathrm{a}, \mathrm{b}, *}$, Jin $\mathrm{Xu}^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Key Laboratory of High Confidence Software Technologies of Ministry of Education, Peking University, Beijing 100871, China
${ }^{\text {b }}$ School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

A R T I C L E IN F O

Article history:

Received 16 December 2015
Received in revised form 15 September 2016
Accepted 16 November 2016
Available online 22 November 2016
Communicated by Ł. Kowalik

Keywords:

Tree
Independent domination number
Secure domination number
Combinatorial problems

Abstract

Let $i(G)$ and $\gamma_{s}(G)$ be the independent domination number and secure domination number of a graph G, respectively. Merouane and Chellali (2015) [12] proved that $i(T) \leq \gamma_{s}(T)$ for any tree T and asked to characterize the trees T with $i(T)=\gamma_{s}(T)$. In this paper, we answer the question. We introduce three operations on trees and prove that any tree T with $i(T)=\gamma_{s}(T)$ can be obtained by these operations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and connected. Let $G=(V, E)$ be a graph. A vertex in G is said to dominate itself and every vertex adjacent to it. A set $D \subseteq V$ is said to be a dominating set of G if every vertex not in D is adjacent to at least one vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G.

A set $S \subseteq V$ is independent if no two vertices in S are adjacent. A dominating set D of G is an independent dominating set (IDS) of G if D is independent. The independent domination number, denoted by $i(G)$, is the minimum cardinality of an IDS in G. An IDS of G of cardinality $i(G)$ is called an i-set of G. A set $D \subseteq V$ is a double dominating set of G if every vertex of $V \backslash D$ has at least two neighbors in D and the subgraph induced by D has no isolated vertex. The double domination number, denoted by $\gamma_{\times 2}(G)$, is the minimum cardinality of a double dominating set of G.

[^0]http://dx.doi.org/10.1016/j.ipl.2016.11.004
0020-0190/© 2016 Elsevier B.V. All rights reserved.

A dominating set D of a graph G is said to be a secure dominating set (SDS) if each vertex $u \in V \backslash D$ is adjacent to a vertex $v \in D$ such that $(D \backslash\{v\}) \cup\{u\}$ is a dominating set of G. The secure domination number, denoted by $\gamma_{s}(G)$, is the minimum cardinality of an SDS of G. An SDS of G of cardinality $\gamma_{s}(G)$ is called a γ_{s}-set of G.

The problem of secure domination was introduced by Cockayne et al. [8] and has been investigated in the literature [2-7,9-13]. Recently, Merouane and Chellali [12] proved that $i(T) \leq \gamma_{S}(T)$ for any tree T and proposed the following problem.

Problem 1.1. (Merouane and Chellali [12]) Characterize the trees T with $i(T)=\gamma_{s}(T)$.

In this paper, we give a characterization of the trees T with $i(T)=\gamma_{s}(T)$.

2. Notations and preliminary results

For a graph $G=(V(G), E(G))$, we denote by $N_{G}(v)=$ $\{u \in V(G): u v \in E(G)\}$ the open neighborhood of a vertex
$v \in V(G)$. For a set $X \subseteq V(G)$, we denote by $G[X]$ the subgraph of G induced by X. An S-external private neighbor of a vertex $v \in S$ is a vertex $u \in V(G) \backslash S$ which is adjacent to v but to no other vertex of S. The set of all S-external private neighbors of $v \in S$ is called the S-external private neighbor set of v and is denoted epn (v, S). The degree of v in G, denoted by $d_{G}(v)$, is the cardinality of its open neighborhood in G. The distance of two vertices u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest path between u and v. A vertex of degree one is called a leaf. A graph is trivial if it has a single vertex. Denote by P_{n} the path on n vertices.

Let T be a tree. If $u \in V(T)$ is not a leaf of T and $k=\min \left\{d_{T}(u, v): v \in V(T)\right.$ and v is a leaf of $\left.T\right\}$, then u is called a k-stem of T. A 1 -stem is also called a stem. A stem v of T is called a solid stem if v is adjacent to at least $d_{T}(v)-1$ leaves in T. A pendent edge of T is an edge incident to a leaf of T. For any edge $u v \in E(T)$, we denote by T_{u}^{v} the connected component of $T-u v$ containing the vertex u. Obviously, T_{u}^{v} is a subtree of T.

Lemma 2.1. (Cockayne et al. [8]) A set $D \subseteq V$ is an SDS of a graph G if and only if for each $u \in V \backslash D$, there exists $v \in D$ such that $G[e p n(v, D) \cup\{u, v\}]$ is complete.

Lemma 2.2. (Merouane and Chellali [12]) For every tree T, $i(T) \leq \gamma_{S}(T)$.

Note that Lemma 2.2 is obtained from the following two results.

Lemma 2.3. (Blidia et al. [1]) For every nontrivial tree T, $2 i(T) \leq \gamma_{\times 2}(T)$, with equality if and only if T has two disjoint i-sets.

Lemma 2.4. (Merouane and Chellali [12]) For every connected graph $G, \gamma_{\times 2}(G) \leq 2 \gamma_{s}(G)$.

By Lemmas 2.3 and 2.4, we can immediately obtain the following result.

Corollary 2.5. Let T be a nontrivial tree. If $i(T)=\gamma_{s}(T)$, then T has two disjoint i-sets.

Now we give some properties of the secure domination of graphs, which are useful to characterize the structures of trees.

Lemma 2.6. Let G be a connected graph with at least three vertices. Then G has a γ_{s}-set containing all stems of G.

Proof. Let D be a γ_{s}-set of G. If G has no stem or D contains all stems of G, then D is a required γ_{s}-set of G. Otherwise, for any stem x of G such that $x \notin D$, since D is a dominating set of G, we know that each leaf adjacent to x belongs to D. So $(D \backslash\{y\}) \cup\{x\}$ is also a γ_{s}-set of G, where y is a leaf adjacent to x in T. By repeating this process, we can obtain a γ_{s}-set of G which contains all stems of G.

Lemma 2.7. Let G_{1} and G_{2} be two subgraphs of a graph G such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$ and $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$. If D_{i} is an SDS of G_{i}, where $i=1,2$, then $D_{1} \cup D_{2}$ is an SDS of G.

Proof. For any $u \in V(G) \backslash\left(D_{1} \cup D_{2}\right)$, we have $u \in V\left(G_{j}\right) \backslash$ D_{j}, where $j=1$ or 2 . Since D_{j} is an SDS of G_{j}, by Lemma 2.1, there exists $v \in D_{j}$ such that the induced subgraph $G_{j}^{\prime}=G_{j}\left[\operatorname{epn}\left(v, D_{j}\right) \cup\{u, v\}\right]$ is complete. Note that D_{3-j} is an SDS of G_{3-j}, we obtain that $G_{j}^{\prime}=G\left[e p n\left(v, D_{1} \cup\right.\right.$ $\left.\left.D_{2}\right) \cup\{u, v\}\right]$. So $D_{1} \cup D_{2}$ is an SDS of G by Lemma 2.1.

Lemma 2.8. Let T_{x}^{y} be a subtree of T. If D is an SDS of T such that $x \in D$, then the restriction D_{x} of D to $V\left(T_{x}^{y}\right)$ is an SDS of T_{x}^{y}.

Proof. For any $u \in V\left(T_{x}^{y}\right) \backslash D_{x}$, since D is an SDS of T, by Lemma 2.1, there exists $v \in D$ such that $T[\operatorname{epn}(v, D) \cup$ $\{u, v\}]$ is complete. Note that such vertex v must in $V\left(T_{x}^{y}\right)$, so $T_{\chi}^{y}\left[e p n\left(v, D_{\chi}\right) \cup\{u, v\}\right]$ is also complete. Therefore, D_{x} is an SDS of T_{χ}^{y}.

3. A characterization of the trees T with $i(T)=\gamma_{s}(T)$

Let T be a tree. If $|V(T)| \leq 2$, then $i(T)=\gamma_{s}(T)$. Thus, in what follows, we only consider the case of $|V(T)| \geq 3$. We first need to prove the following useful result.

Lemma 3.1. Let T be a tree such that $i(T)=\gamma_{s}(T)$. Then any stem of T is adjacent to exactly one leaf.

Proof. Suppose that there exists a stem x of T which is adjacent to at least two leaves y and z. By Lemma 2.6, T has a γ_{s}-set containing all stems of T, denoted by D. Then at least one of y and z, say y, belongs to D. Let $T^{\prime}=T-y$ and $D^{\prime}=D \backslash\{y\}$. Since $x \in D$, by Lemma 2.8 we obtain that D^{\prime} is an SDS of T^{\prime}. So $\gamma_{s}\left(T^{\prime}\right) \leq|D|-1$. On the other hand, for any γ_{s}-set D_{0}^{\prime} of $T^{\prime}, D_{0}^{\prime} \cup\{y\}$ is an SDS of T by Lemma 2.7. Then $\gamma_{s}(T) \leq\left|D_{0}^{\prime}\right|+1=\gamma_{s}\left(T^{\prime}\right)+1$. So $\gamma_{s}\left(T^{\prime}\right)=$ $|D|-1=\gamma_{s}(T)-1$.

Now we prove that $i\left(T^{\prime}\right)=i(T)-1$. Let D_{1}^{\prime} be an i-set of T^{\prime}. If $x \in D_{1}^{\prime}$, then D_{1}^{\prime} is an IDS of T; otherwise, $D_{1}^{\prime} \cup\{y\}$ is an IDS of T. So $i(T) \leq\left|D_{1}^{\prime}\right|+1=i\left(T^{\prime}\right)+1$. Note that $i(T)=\gamma_{s}(T)$ and $i\left(T^{\prime}\right) \leq \gamma_{s}\left(T^{\prime}\right)$ by Lemma 2.2, we have $i\left(T^{\prime}\right) \leq i(T)-1$. So $i\left(T^{\prime}\right)=i(T)-1$.

Therefore, $\gamma_{s}\left(T^{\prime}\right)=\gamma_{s}(T)-1=i(T)-1=i\left(T^{\prime}\right)$. It follow from Corollary 2.5 that T^{\prime} has two disjoint i-sets. Since for any IDS of T^{\prime}, the vertex z is dominated only by x or z, so there exists an i-set of T^{\prime} containing x, denoted by D_{1}^{\prime}. We can see that D_{1}^{\prime} is also an IDS of T. Thus, $i(T) \leq\left|D_{1}^{\prime}\right|=$ $i\left(T^{\prime}\right)$, a contradiction.

As a straightforward consequence of Lemma 3.1, we have:

Corollary 3.2. Let T be a tree and x be a solid stem of T. If $i(T)=\gamma_{s}(T)$, then $d_{T}(x)=2$.

Lemma 3.3. Let T be a tree such that $i(T)=\gamma_{s}(T), x$ be a solid stem and y be the unique leaf adjacent to x in T. For any γ_{s}-set D of T, if $x \in D$, then $y \notin D$.

https://daneshyari.com/en/article/4950946

Download Persian Version:

https://daneshyari.com/article/4950946

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lizepeng@pku.edu.cn (Z. Li), jxu@pku.edu.cn (J. Xu).

