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second largest distance eigenvalues of the squares are less than ¥, and determine the
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distance eigenvalues, as well as the unique n-vertex trees of which the squares achieve
minimum, second-minimum and third-minimum second largest distance eigenvalues.
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1. Introduction

We consider simple undirected graphs. Let G be a con-
nected graph. The distance between two vertices of G is
the length of a shortest path connecting them in G. For
a positive integer k, the k-th power of G, denoted by G¥,
is the (simple) graph obtained from G by adding an edge
between each pair of vertices with distance at most k
[6, p. 82]. Obviously, if G is of diameter d, then G! =G
and G! is isomorphic to the complete graph for integer
i >d. In particular, the graph G2 is also called the square
of G. Graph powers are useful in designing efficient al-
gorithms for certain combinatorial optimization problems,
see, e.g., [2,5]. In distributed computing, the k-th power of
graph G represents the possible flow of information dur-
ing k rounds of communication in a distributed network of
processors organized according to G [17]. For various as-
pects of graph powers, see, e.g., [1,7,9,13,15,16,20].

Let G be a connected graph with vertex set V(G) =
{vi,...,vp}. For 1 <i, j <n, let dg(v;, vj) be the distance
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between vertices v; and v; in G. The distance matrix of G
is the n x n matrix D(G) = [d¢(v;, v;)]. The distance eigen-
values of G, denoted by A1(G),...,An(G), are the eigen-
values of D(G), arranged in non-increasing order. We call
Ak(G) the k-th largest distance eigenvalue of G. The study
of distance eigenvalues dates back to the classical work of
Graham and Pollack [12], Edelberg et al. [10] and Graham
and Lovasz [11] in 1970s. A relationship was established
in [12] between the number of negative distance eigen-
values and the addressing problem in data communication
systems. Until now the distance eigenvalues have been
studied extensively, see, e.g. [3,19]. For a tree G, Graham
and Pollack [12] showed that A,(G) < 0. For a unicyclic
graph G, Bapat et al. [4] showed that 1,(G) < 0 if its girth
is odd and 1, (G) =0 if its girth is even. In [21], we charac-
terized all connected graphs with second largest distance
eigenvalue less than —2 + +/2, and all trees with second
largest distance eigenvalue less than —%. Thus, it is of in-
terest to study the distance eigenvalues of some particular
classes of graphs. Now we consider the graph powers, of
which the adjacency and Laplacian eigenvalues have been
studied, see [20,9]. The bounds of a graph invariant are
important information for the graph in the sense that they
establish the range of the graph invariant.
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In this paper, we give sharp lower bounds for the
(first) largest and the second largest distance eigenvalues
of the k-th power of a connected graph, and determine all
trees and unicyclic graphs G such that 1,(G?) < @ We
also determine the unique n-vertex trees, the squares of
which achieve minimum and second-minimum largest dis-
tance eigenvalues, as well as the unique n-vertex trees, the
squares of which achieve minimum, second-minimum and
third-minimum second largest distance eigenvalues.

2. Preliminaries and lemmas

In this section, we give preliminaries and some lemmas
that will be used later.

Let G be a connected graph with two nonadjacent ver-
tices u,v € V(G). Let G’ = G + uv be the graph obtained
from G by adding the edge uv. Note that D(G) is irre-
ducible, D(G’) is nonnegative, and each entry of D(G’)
does not exceed the corresponding one of D(G) with
dg(u,v) <dg(u,v). The following result follows, see [18,
p. 38].

Lemma 2.1. Let G be a connected graph with two nonadjacent
vertices u, v € V(G). Then A1(G) > 11(G 4+ uv).

Let G be a connected graph, and H an induced sub-
graph of G. If H is connected and dy(u, v) =d¢(u, v) for
all {u, v} € V(H), then write H < G. By the interlacing the-
orem [14, pp. 185-186], we have

Lemma 2.2. Let G be a connected graph, and H a non-trivial
induced subgraph of G with H < G. Then A3(G) > A(H).

Let G be a graph. For u € V(G), Ng(u) denotes the set
of neighbors of vertex u in G, and d¢g(u) = [Ng(u)| denotes
the degree of vertex u in G.

Let diam(G) be the diameter of a connected graph G.

Let Kn, P, S, and C, be respectively the complete
graph, the path, the star and the cycle on n vertices.

Let I,; be the n x n identity matrix, and Jmx, the m xn
all-one matrix.

For positive integers r, s and t, let A= A(r,s,t) be the
following symmetric block matrix

.err ]rXS 2.lr><t
]5><r ]s><s ]s><t )
2Jexr Jexs Jext

whose rows and columns are partitioned according to the
partition {1,...,r+s+t}={1,...,r}U{r+1,...,r+s}uU
{r4+s+1,...,r + s+ t}. Obviously, A is of rank 3, and
thus 0 is one of its eigenvalues with multiplicity at least
r+ s+t — 3. The quotient matrix of A is the matrix B =
B(r,s,t) whose entries are the average row sums of the
corresponding blocks of 4, i.e.,

r s2t
B=|r st
2rs t

Since each block of A has constant row sum, the above
partition is equitable (or regular). By [8, Lemma 2.3.1], all

eigenvalues of B are also eigenvalues of A. Let f; () =
det(AI3 — B). By direct calculation, we have

frsc) =23 — (r +s+6A% — 3rtr +rst.

Since frs¢(0) =rst # 0, the eigenvalues of B are non-zero.
Thus the eigenvalues of A are 0 with multiplicity r + s +
t — 3, and the three roots of the equation f; s (1) =0.

Let Dy p be the n-vertex double star obtained by adding
an edge between the centers of the stars of Spi; and

Sn—p—1, where 1 < p < ["52].

Lemma23.For2<p< L%J andi=1, 2, we have )L,-(Dﬁqp) >
Ai(D%,p_]).

Proof. Let G = Dy . Label by vi,...,v, the vertices

of G, where dg(v1) =---=dg(vp) =1,dc(vpy1) =p+1,
dg(vpta) =n — 1 — p, dg(vVpy3) = -+ = dg(vp) = 1,
No(Vp+1) = {vi,....Vp, Vp2} and Ng(Vpi2) = {vp1,
Vp43, ..., Vp}. Then, with respect to the partition V(G%) =
V(G) = {v1,...,Vp} U {Vpi1, Vpi2} U {vpy3,..., vy}, we
have

D(G®) +1In=A(p,2,n—2—p).

Thus the eigenvalues of D(G2) + I,, which are A(G2) +
1,..., 2 (G?) + 1, are given by 0 with multiplicity n — 3,
and the three roots of the equation f,2,-2-p(A) =0.
Since diam(G) = 3, we have P4 < G, and thus P2 < G2
By Lemma 2.2, 41(G?) + 1> 22(G?) + 1= 1a(PD) + 1=
3-Y17 4 1 > 0, implying that 2;(G?) + 1 and 45(G?) + 1
are respectively the largest and the second largest roots
of fpan—2-p(X) =0, ie, A1(G?) and A2(G?) are respec-
tively the largest and the second largest roots of g,(1) =0,
where

gpN) = fpan—2-pA+1)
=13 —m—3)A%—3pn+2n—3p> —6p—3)Ar
—pn—n+p?+2p+1.
Let G’ = Dy p—1. Then A1(G’?) and A2(G'?) are respectively

the largest and the second largest roots of g,_1(1) =0. By
direct calculation, we have

g —gp 1MW) =—-m—-2p—-1DEBr+1).

Thus g, (21(G'?)) = gp(11(G'?) — gp-1(M(G'?) = —(n —
2p — D(Br1(G'?) + 1) < 0 by noting that A1(G'2) > 0,
which, together with the fact that gp(x) > 0 for A >
11(G?), implies that 11(G%) > A1(G’2).

Note that 2 < p < L#J < % which implies that
n > 2p + 2. By direct check, gp_1(—%) = —%n + % <0
and gp_1(=1) =2n(p — 1) —2p> +2>2p> -2 >0,
implying that A2(G'%) € (—1,—13). Then g,(%2(G'?)) =
2p(12(G'?) — gp-102(G'?) = —(n — 2p — H(BA2(C'?) +
1) > 0, which, together with the fact that A;(G2) >
21(G’2), implies that 1,(G2) > A2(G'?). O

Let G; and G; be two vertex-disjoint graphs with u €
V(G1) and v € V(Gy). The coalescence G1(u) o Ga(v) is
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