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We give sharp lower bounds for the largest and the second largest distance eigenvalues of 
the k-th power of a connected graph, determine all trees and unicyclic graphs for which the 
second largest distance eigenvalues of the squares are less than 

√
5−3
2 , and determine the 

unique n-vertex trees of which the squares achieve minimum and second-minimum largest 
distance eigenvalues, as well as the unique n-vertex trees of which the squares achieve 
minimum, second-minimum and third-minimum second largest distance eigenvalues.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider simple undirected graphs. Let G be a con-
nected graph. The distance between two vertices of G is 
the length of a shortest path connecting them in G . For 
a positive integer k, the k-th power of G , denoted by Gk , 
is the (simple) graph obtained from G by adding an edge 
between each pair of vertices with distance at most k
[6, p. 82]. Obviously, if G is of diameter d, then G1 ∼= G
and Gi is isomorphic to the complete graph for integer 
i ≥ d. In particular, the graph G2 is also called the square 
of G . Graph powers are useful in designing efficient al-
gorithms for certain combinatorial optimization problems, 
see, e.g., [2,5]. In distributed computing, the k-th power of 
graph G represents the possible flow of information dur-
ing k rounds of communication in a distributed network of 
processors organized according to G [17]. For various as-
pects of graph powers, see, e.g., [1,7,9,13,15,16,20].

Let G be a connected graph with vertex set V (G) =
{v1, . . . , vn}. For 1 ≤ i, j ≤ n, let dG(vi, v j) be the distance 
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between vertices vi and v j in G . The distance matrix of G
is the n ×n matrix D(G) = [dG (vi, v j)]. The distance eigen-
values of G , denoted by λ1(G), . . . , λn(G), are the eigen-
values of D(G), arranged in non-increasing order. We call 
λk(G) the k-th largest distance eigenvalue of G . The study 
of distance eigenvalues dates back to the classical work of 
Graham and Pollack [12], Edelberg et al. [10] and Graham 
and Lovász [11] in 1970s. A relationship was established 
in [12] between the number of negative distance eigen-
values and the addressing problem in data communication 
systems. Until now the distance eigenvalues have been 
studied extensively, see, e.g. [3,19]. For a tree G , Graham 
and Pollack [12] showed that λ2(G) < 0. For a unicyclic 
graph G , Bapat et al. [4] showed that λ2(G) < 0 if its girth 
is odd and λ2(G) = 0 if its girth is even. In [21], we charac-
terized all connected graphs with second largest distance 
eigenvalue less than −2 + √

2, and all trees with second 
largest distance eigenvalue less than − 1

2 . Thus, it is of in-
terest to study the distance eigenvalues of some particular 
classes of graphs. Now we consider the graph powers, of 
which the adjacency and Laplacian eigenvalues have been 
studied, see [20,9]. The bounds of a graph invariant are 
important information for the graph in the sense that they 
establish the range of the graph invariant.
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In this paper, we give sharp lower bounds for the 
(first) largest and the second largest distance eigenvalues 
of the k-th power of a connected graph, and determine all 
trees and unicyclic graphs G such that λ2(G2) <

√
5−3
2 . We 

also determine the unique n-vertex trees, the squares of 
which achieve minimum and second-minimum largest dis-
tance eigenvalues, as well as the unique n-vertex trees, the 
squares of which achieve minimum, second-minimum and 
third-minimum second largest distance eigenvalues.

2. Preliminaries and lemmas

In this section, we give preliminaries and some lemmas 
that will be used later.

Let G be a connected graph with two nonadjacent ver-
tices u, v ∈ V (G). Let G ′ = G + uv be the graph obtained 
from G by adding the edge uv . Note that D(G) is irre-
ducible, D(G ′) is nonnegative, and each entry of D(G ′)
does not exceed the corresponding one of D(G) with 
dG ′ (u, v) < dG(u, v). The following result follows, see [18, 
p. 38].

Lemma 2.1. Let G be a connected graph with two nonadjacent 
vertices u, v ∈ V (G). Then λ1(G) > λ1(G + uv).

Let G be a connected graph, and H an induced sub-
graph of G . If H is connected and dH (u, v) = dG(u, v) for 
all {u, v} ⊆ V (H), then write H � G . By the interlacing the-
orem [14, pp. 185–186], we have

Lemma 2.2. Let G be a connected graph, and H a non-trivial 
induced subgraph of G with H � G. Then λ2(G) ≥ λ2(H).

Let G be a graph. For u ∈ V (G), NG(u) denotes the set 
of neighbors of vertex u in G , and dG (u) = |NG(u)| denotes 
the degree of vertex u in G .

Let diam(G) be the diameter of a connected graph G .
Let Kn , Pn , Sn and Cn be respectively the complete 

graph, the path, the star and the cycle on n vertices.
Let In be the n × n identity matrix, and Jm×n the m × n

all-one matrix.
For positive integers r, s and t , let A = A(r, s, t) be the 

following symmetric block matrix⎡
⎣ Jr×r Jr×s 2 Jr×t

J s×r J s×s J s×t

2 Jt×r Jt×s Jt×t

⎤
⎦ ,

whose rows and columns are partitioned according to the 
partition {1, . . . , r + s + t} = {1, . . . , r} ∪ {r + 1, . . . , r + s} ∪
{r + s + 1, . . . , r + s + t}. Obviously, A is of rank 3, and 
thus 0 is one of its eigenvalues with multiplicity at least 
r + s + t − 3. The quotient matrix of A is the matrix B =
B(r, s, t) whose entries are the average row sums of the 
corresponding blocks of A, i.e.,

B =
⎡
⎣ r s 2t

r s t
2r s t

⎤
⎦ .

Since each block of A has constant row sum, the above 
partition is equitable (or regular). By [8, Lemma 2.3.1], all 

eigenvalues of B are also eigenvalues of A. Let fr,s,t(λ) =
det(λI3 − B). By direct calculation, we have

fr,s,t(λ) = λ3 − (r + s + t)λ2 − 3rtλ + rst.

Since fr,s,t(0) = rst �= 0, the eigenvalues of B are non-zero. 
Thus the eigenvalues of A are 0 with multiplicity r + s +
t − 3, and the three roots of the equation fr,s,t(λ) = 0.

Let Dn,p be the n-vertex double star obtained by adding 
an edge between the centers of the stars of S p+1 and 
Sn−p−1, where 1 ≤ p ≤ �n−2

2 .

Lemma 2.3. For 2 ≤ p ≤�n−2
2  and i =1, 2, we have λi(D2

n,p) >
λi(D2

n,p−1).

Proof. Let G = Dn,p . Label by v1, . . . , vn the vertices 
of G , where dG (v1) = · · · = dG (v p) = 1, dG(v p+1) = p + 1, 
dG (v p+2) = n − 1 − p, dG(v p+3) = · · · = dG(vn) = 1,
NG(v p+1) = {v1, . . . , v p, v p+2} and NG(v p+2) = {v p+1,

v p+3, . . . , vn}. Then, with respect to the partition V (G2) =
V (G) = {v1, . . . , v p} ∪ {v p+1, v p+2} ∪ {v p+3, . . . , vn}, we 
have

D(G2) + In = A(p,2,n − 2 − p).

Thus the eigenvalues of D(G2) + In , which are λ1(G2) +
1, . . . , λn(G2) + 1, are given by 0 with multiplicity n − 3, 
and the three roots of the equation f p,2,n−2−p(λ) = 0. 
Since diam(G) = 3, we have P4 � G , and thus P 2

4 � G2. 
By Lemma 2.2, λ1(G2) + 1 ≥ λ2(G2) + 1 ≥ λ2(P 2

4) + 1 =
3−√

17
2 + 1 > 0, implying that λ1(G2) + 1 and λ2(G2) + 1

are respectively the largest and the second largest roots 
of f p,2,n−2−p(λ) = 0, i.e., λ1(G2) and λ2(G2) are respec-
tively the largest and the second largest roots of gp(λ) = 0, 
where

gp(λ) = f p,2,n−2−p(λ + 1)

= λ3 − (n − 3)λ2 − (3pn + 2n − 3p2 − 6p − 3)λ

− pn − n + p2 + 2p + 1.

Let G ′ = Dn,p−1. Then λ1(G ′ 2) and λ2(G ′ 2) are respectively 
the largest and the second largest roots of gp−1(λ) = 0. By 
direct calculation, we have

gp(λ) − gp−1(λ) = −(n − 2p − 1)(3λ + 1).

Thus gp(λ1(G ′ 2)) = gp(λ1(G ′ 2)) − gp−1(λ1(G ′ 2)) = −(n −
2p − 1)(3λ1(G ′ 2) + 1) < 0 by noting that λ1(G ′ 2) > 0, 
which, together with the fact that gp(λ) ≥ 0 for λ ≥
λ1(G2), implies that λ1(G2) > λ1(G ′ 2).

Note that 2 ≤ p ≤ �n−2
2  ≤ n−2

2 , which implies that 
n ≥ 2p + 2. By direct check, gp−1(− 1

3 ) = − 4
9 n + 8

27 < 0
and gp−1(−1) = 2n(p − 1) − 2p2 + 2 ≥ 2p2 − 2 > 0, 
implying that λ2(G ′ 2) ∈ (−1, − 1

3 ). Then gp(λ2(G ′ 2)) =
gp(λ2(G ′ 2)) − gp−1(λ2(G ′ 2)) = −(n − 2p − 1)(3λ2(G ′ 2) +
1) > 0, which, together with the fact that λ1(G2) >
λ1(G ′ 2), implies that λ2(G2) > λ2(G ′ 2). �

Let G1 and G2 be two vertex-disjoint graphs with u ∈
V (G1) and v ∈ V (G2). The coalescence G1(u) ◦ G2(v) is 
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