On the two largest distance eigenvalues of graph powers

Rundan Xing ${ }^{\text {a }}$, Bo Zhou ${ }^{\text {b,* }}$
a School of Computer Science, Wuyi University, Jiangmen 529020, PR China
${ }^{\text {b }}$ School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China

A R T I C L E IN F O

Article history:

Received 14 September 2015
Received in revised form 17 August 2016
Accepted 23 November 2016
Available online 7 December 2016
Communicated by M. Chrobak

Keywords:

Combinatorial problems
Distance eigenvalues
k-th Power of a graph
Tree
Unicyclic graph

Abstract

We give sharp lower bounds for the largest and the second largest distance eigenvalues of the k-th power of a connected graph, determine all trees and unicyclic graphs for which the second largest distance eigenvalues of the squares are less than $\frac{\sqrt{5}-3}{2}$, and determine the unique n-vertex trees of which the squares achieve minimum and second-minimum largest distance eigenvalues, as well as the unique n-vertex trees of which the squares achieve minimum, second-minimum and third-minimum second largest distance eigenvalues.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider simple undirected graphs. Let G be a connected graph. The distance between two vertices of G is the length of a shortest path connecting them in G. For a positive integer k, the k-th power of G, denoted by G^{k}, is the (simple) graph obtained from G by adding an edge between each pair of vertices with distance at most k [6, p. 82]. Obviously, if G is of diameter d, then $G^{1} \cong G$ and G^{i} is isomorphic to the complete graph for integer $i \geq d$. In particular, the graph G^{2} is also called the square of G. Graph powers are useful in designing efficient algorithms for certain combinatorial optimization problems, see, e.g., $[2,5]$. In distributed computing, the k-th power of graph G represents the possible flow of information during k rounds of communication in a distributed network of processors organized according to G [17]. For various aspects of graph powers, see, e.g., [1,7,9,13,15,16,20].

Let G be a connected graph with vertex set $V(G)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$. For $1 \leq i, j \leq n$, let $d_{G}\left(v_{i}, v_{j}\right)$ be the distance

[^0]between vertices v_{i} and v_{j} in G. The distance matrix of G is the $n \times n$ matrix $D(G)=\left[d_{G}\left(v_{i}, v_{j}\right)\right]$. The distance eigenvalues of G, denoted by $\lambda_{1}(G), \ldots, \lambda_{n}(G)$, are the eigenvalues of $D(G)$, arranged in non-increasing order. We call $\lambda_{k}(G)$ the k-th largest distance eigenvalue of G. The study of distance eigenvalues dates back to the classical work of Graham and Pollack [12], Edelberg et al. [10] and Graham and Lovász [11] in 1970s. A relationship was established in [12] between the number of negative distance eigenvalues and the addressing problem in data communication systems. Until now the distance eigenvalues have been studied extensively, see, e.g. [3,19]. For a tree G, Graham and Pollack [12] showed that $\lambda_{2}(G)<0$. For a unicyclic graph G, Bapat et al. [4] showed that $\lambda_{2}(G)<0$ if its girth is odd and $\lambda_{2}(G)=0$ if its girth is even. In [21], we characterized all connected graphs with second largest distance eigenvalue less than $-2+\sqrt{2}$, and all trees with second largest distance eigenvalue less than $-\frac{1}{2}$. Thus, it is of interest to study the distance eigenvalues of some particular classes of graphs. Now we consider the graph powers, of which the adjacency and Laplacian eigenvalues have been studied, see $[20,9]$. The bounds of a graph invariant are important information for the graph in the sense that they establish the range of the graph invariant.

In this paper, we give sharp lower bounds for the (first) largest and the second largest distance eigenvalues of the k-th power of a connected graph, and determine all trees and unicyclic graphs G such that $\lambda_{2}\left(G^{2}\right)<\frac{\sqrt{5}-3}{2}$. We also determine the unique n-vertex trees, the squares of which achieve minimum and second-minimum largest distance eigenvalues, as well as the unique n-vertex trees, the squares of which achieve minimum, second-minimum and third-minimum second largest distance eigenvalues.

2. Preliminaries and lemmas

In this section, we give preliminaries and some lemmas that will be used later.

Let G be a connected graph with two nonadjacent vertices $u, v \in V(G)$. Let $G^{\prime}=G+u v$ be the graph obtained from G by adding the edge $u v$. Note that $D(G)$ is irreducible, $D\left(G^{\prime}\right)$ is nonnegative, and each entry of $D\left(G^{\prime}\right)$ does not exceed the corresponding one of $D(G)$ with $d_{G^{\prime}}(u, v)<d_{G}(u, v)$. The following result follows, see [18, p. 38].

Lemma 2.1. Let G be a connected graph with two nonadjacent vertices $u, v \in V(G)$. Then $\lambda_{1}(G)>\lambda_{1}(G+u v)$.

Let G be a connected graph, and H an induced subgraph of G. If H is connected and $d_{H}(u, v)=d_{G}(u, v)$ for all $\{u, v\} \subseteq V(H)$, then write $H \unlhd G$. By the interlacing theorem [14, pp. 185-186], we have

Lemma 2.2. Let G be a connected graph, and H a non-trivial induced subgraph of G with $H \unlhd G$. Then $\lambda_{2}(G) \geq \lambda_{2}(H)$.

Let G be a graph. For $u \in V(G), N_{G}(u)$ denotes the set of neighbors of vertex u in G, and $d_{G}(u)=\left|N_{G}(u)\right|$ denotes the degree of vertex u in G.

Let $\operatorname{diam}(G)$ be the diameter of a connected graph G.
Let K_{n}, P_{n}, S_{n} and C_{n} be respectively the complete graph, the path, the star and the cycle on n vertices.

Let I_{n} be the $n \times n$ identity matrix, and $J_{m \times n}$ the $m \times n$ all-one matrix.

For positive integers r, s and t, let $A=A(r, s, t)$ be the following symmetric block matrix
$\left[\begin{array}{ccc}J_{r \times r} & J_{r \times s} & 2 J_{r \times t} \\ J_{s \times r} & J_{s \times s} & J_{s \times t} \\ 2 J_{t \times r} & J_{t \times s} & J_{t \times t}\end{array}\right]$,
whose rows and columns are partitioned according to the partition $\{1, \ldots, r+s+t\}=\{1, \ldots, r\} \cup\{r+1, \ldots, r+s\} \cup$ $\{r+s+1, \ldots, r+s+t\}$. Obviously, A is of rank 3, and thus 0 is one of its eigenvalues with multiplicity at least $r+s+t-3$. The quotient matrix of A is the matrix $B=$ $B(r, s, t)$ whose entries are the average row sums of the corresponding blocks of A, i.e.,
$B=\left[\begin{array}{ccc}r & s & 2 t \\ r & s & t \\ 2 r & s & t\end{array}\right]$.
Since each block of A has constant row sum, the above partition is equitable (or regular). By [8, Lemma 2.3.1], all
eigenvalues of B are also eigenvalues of A. Let $f_{r, s, t}(\lambda)=$ $\operatorname{det}\left(\lambda I_{3}-B\right)$. By direct calculation, we have
$f_{r, s, t}(\lambda)=\lambda^{3}-(r+s+t) \lambda^{2}-3 r t \lambda+r s t$.
Since $f_{r, s, t}(0)=r s t \neq 0$, the eigenvalues of B are non-zero. Thus the eigenvalues of A are 0 with multiplicity $r+s+$ $t-3$, and the three roots of the equation $f_{r, s, t}(\lambda)=0$.

Let $D_{n, p}$ be the n-vertex double star obtained by adding an edge between the centers of the stars of S_{p+1} and S_{n-p-1}, where $1 \leq p \leq\left\lfloor\frac{n-2}{2}\right\rfloor$.

Lemma 2.3. For $2 \leq p \leq\left\lfloor\frac{n-2}{2}\right\rfloor$ and $i=1,2$, we have $\lambda_{i}\left(D_{n, p}^{2}\right)>$ $\lambda_{i}\left(D_{n, p-1}^{2}\right)$.

Proof. Let $G=D_{n, p}$. Label by v_{1}, \ldots, v_{n} the vertices of G, where $d_{G}\left(v_{1}\right)=\cdots=d_{G}\left(v_{p}\right)=1, d_{G}\left(v_{p+1}\right)=p+1$, $d_{G}\left(v_{p+2}\right)=n-1-p, \quad d_{G}\left(v_{p+3}\right)=\cdots=d_{G}\left(v_{n}\right)=1$, $N_{G}\left(v_{p+1}\right)=\left\{v_{1}, \ldots, v_{p}, v_{p+2}\right\}$ and $N_{G}\left(v_{p+2}\right)=\left\{v_{p+1}\right.$, $\left.v_{p+3}, \ldots, v_{n}\right\}$. Then, with respect to the partition $V\left(G^{2}\right)=$ $V(G)=\left\{v_{1}, \ldots, v_{p}\right\} \cup\left\{v_{p+1}, v_{p+2}\right\} \cup\left\{v_{p+3}, \ldots, v_{n}\right\}$, we have
$D\left(G^{2}\right)+I_{n}=A(p, 2, n-2-p)$.
Thus the eigenvalues of $D\left(G^{2}\right)+I_{n}$, which are $\lambda_{1}\left(G^{2}\right)+$ $1, \ldots, \lambda_{n}\left(G^{2}\right)+1$, are given by 0 with multiplicity $n-3$, and the three roots of the equation $f_{p, 2, n-2-p}(\lambda)=0$. Since $\operatorname{diam}(G)=3$, we have $P_{4} \unlhd G$, and thus $P_{4}^{2} \unlhd G^{2}$. By Lemma 2.2, $\lambda_{1}\left(G^{2}\right)+1 \geq \lambda_{2}\left(G^{2}\right)+1 \geq \lambda_{2}\left(P_{4}^{2}\right)+1=$ $\frac{3-\sqrt{17}}{2}+1>0$, implying that $\lambda_{1}\left(G^{2}\right)+1$ and $\lambda_{2}\left(G^{2}\right)+1$ are respectively the largest and the second largest roots of $f_{p, 2, n-2-p}(\lambda)=0$, i.e., $\lambda_{1}\left(G^{2}\right)$ and $\lambda_{2}\left(G^{2}\right)$ are respectively the largest and the second largest roots of $g_{p}(\lambda)=0$, where

$$
\begin{aligned}
g_{p}(\lambda)= & f_{p, 2, n-2-p}(\lambda+1) \\
= & \lambda^{3}-(n-3) \lambda^{2}-\left(3 p n+2 n-3 p^{2}-6 p-3\right) \lambda \\
& -p n-n+p^{2}+2 p+1 .
\end{aligned}
$$

Let $G^{\prime}=D_{n, p-1}$. Then $\lambda_{1}\left(G^{2}\right)$ and $\lambda_{2}\left(G^{\prime 2}\right)$ are respectively the largest and the second largest roots of $g_{p-1}(\lambda)=0$. By direct calculation, we have
$g_{p}(\lambda)-g_{p-1}(\lambda)=-(n-2 p-1)(3 \lambda+1)$.
Thus $g_{p}\left(\lambda_{1}\left(G^{\prime 2}\right)\right)=g_{p}\left(\lambda_{1}\left(G^{\prime 2}\right)\right)-g_{p-1}\left(\lambda_{1}\left(G^{\prime 2}\right)\right)=-(n-$ $2 p-1)\left(3 \lambda_{1}\left(G^{\prime 2}\right)+1\right)<0$ by noting that $\lambda_{1}\left(G^{\prime 2}\right)>0$, which, together with the fact that $g_{p}(\lambda) \geq 0$ for $\lambda \geq$ $\lambda_{1}\left(G^{2}\right)$, implies that $\lambda_{1}\left(G^{2}\right)>\lambda_{1}\left(G^{\prime 2}\right)$.

Note that $2 \leq p \leq\left\lfloor\frac{n-2}{2}\right\rfloor \leq \frac{n-2}{2}$, which implies that $n \geq 2 p+2$. By direct check, $g_{p-1}\left(-\frac{1}{3}\right)=-\frac{4}{9} n+\frac{8}{27}<0$ and $g_{p-1}(-1)=2 n(p-1)-2 p^{2}+2 \geq 2 p^{2}-2>0$, implying that $\lambda_{2}\left(G^{\prime 2}\right) \in\left(-1,-\frac{1}{3}\right)$. Then $g_{p}\left(\lambda_{2}\left(G^{\prime 2}\right)\right)=$ $g_{p}\left(\lambda_{2}\left(G^{\prime 2}\right)\right)-g_{p-1}\left(\lambda_{2}\left(G^{\prime 2}\right)\right)=-(n-2 p-1)\left(3 \lambda_{2}\left(G^{\prime 2}\right)+\right.$ 1) >0, which, together with the fact that $\lambda_{1}\left(G^{2}\right)>$ $\lambda_{1}\left(G^{\prime 2}\right)$, implies that $\lambda_{2}\left(G^{2}\right)>\lambda_{2}\left(G^{\prime 2}\right)$.

Let G_{1} and G_{2} be two vertex-disjoint graphs with $u \in$ $V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. The coalescence $G_{1}(u) \circ G_{2}(v)$ is

https://daneshyari.com/en/article/4950949

Download Persian Version:

https://daneshyari.com/article/4950949

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: rundanxing@126.com (R. Xing), zhoubo@scnu.edu.cn (B. Zhou).

