
Information Processing Letters 116 (2016) 744–749

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An efficient algorithm for computing non-overlapping

inversion and transposition distance

Toan Thang Ta, Cheng-Yao Lin, Chin Lung Lu ∗

Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 March 2015
Received in revised form 8 March 2016
Accepted 16 July 2016
Available online 21 July 2016
Communicated by M. Chrobak

Keywords:
Algorithms
Computational biology
Inversion
Transposition
Mutation distance

Given two strings of the same length n, the non-overlapping inversion and transposition
distance (also called mutation distance) between them is defined as the minimum number
of non-overlapping inversion and transposition operations used to transform one string into
the other. In this study, we present an O (n3) time and O (n2) space algorithm to compute
the mutation distance of two input strings.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The dissimilarity of two strings is usually measured by
the so-called edit distance, which is defined as the mini-
mum number of edit operations necessary to convert one
string into the other. The commonly used edit operations
are character insertions, deletions and substitutions. In bi-
ological application, the aforementioned edit operations
correspond to point mutations of DNA sequences (i.e., mu-
tations at the level of individual nucleotides). From evolu-
tionary point of view, however, DNA sequences may evolve
by large-scale mutations (also called rearrangements, i.e.,
mutations at the level of sequence fragments) [6], such as
inversions (i.e., replacing a fragment of DNA sequence by
its reverse complement) and transpositions (i.e., moving a
fragment of DNA sequence from one location to another or,
equivalently, exchanging two adjacent and non-overlapping
fragments on DNA sequence). Note that a large-scale muta-

* Corresponding author.
E-mail addresses: toanthanghy@gmail.com (T.T. Ta),

begoingto0830@gmail.com (C.-Y. Lin), cllu@cs.nthu.edu.tw (C.L. Lu).

tion that replaces a fragment of DNA sequence only by its
reverse (without complement) is called a reversal. Based
on large-scale mutation operations, the dissimilarity (or
mutation distance) between two strings can be defined to
be the minimum number of large-scale mutation opera-
tions used to transform one string to the other. Cantone
et al. [1] introduced an O (nm) time and O (m2) space al-
gorithm to solve an approximate string matching problem
with non-overlapping reversals, which is to find all lo-
cations of a given text that match a given pattern with
non-overlapping reversals, where n is the length of the
text and m is the length of the pattern. In this problem,
two equal-length strings are said to have a match with non-
overlapping reversals if one string can be transformed into
the other using any finite sequence of non-overlapping re-
versals. It should be noted that the number of the used
non-overlapping reversals in the algorithm proposed by
Cantone et al. [1] is not required to be less than or
equal to a fixed non-negative integer. In [1], Cantone et
al. also presented another algorithm whose average-case
time complexity is O (n). Cantone et al. [2] studied the
same problem by considering both non-overlapping rever-

http://dx.doi.org/10.1016/j.ipl.2016.07.004
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:toanthanghy@gmail.com
mailto:begoingto0830@gmail.com
mailto:cllu@cs.nthu.edu.tw
http://dx.doi.org/10.1016/j.ipl.2016.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.07.004&domain=pdf

T.T. Ta et al. / Information Processing Letters 116 (2016) 744–749 745

sals and transpositions, where they called transpositions
as translocations and the lengths of two exchanged ad-
jacent fragments are constrained to be equivalent. They
finally designed an algorithm to solve this problem in
O (nm2) time and O (m2) space. For the above problem,
Grabowski et al. [4] gave another algorithm whose worst-
case time and space are O (nm2) and O (m), respectively.
Moreover, they proved that their algorithm has an O (n)

average time complexity. Recently, Huang et al. [5] stud-
ied the above approximate string matching problem under
non-overlapping reversals by further restricting the num-
ber of the used reversals not to exceed a given positive
integer k. They proposed a dynamic programming algo-
rithm to solve this problem in O (nm2) time and O (m2)

space.
In this work, we are interested in the computation of

the mutation distance between two strings of the same
length under non-overlapping inversions and transposi-
tions (i.e., non-overlapping inversion and transposition
distance), where the lengths of two adjacent and non-
overlapping fragments exchanged by a transposition can
be different. For this problem, we devise an algorithm
whose time and space complexities are O (n3) and O (n2),
respectively, where n is the length of two input strings.
The rest of the paper is organized as follows. In Sec-
tion 2, we provide some notations that are helpful when
we present our algorithm later. Next, we develop the main
algorithm and also analyze its time and space complex-
ities in Section 3. Finally, we have a brief conclusion in
Section 4.

2. Preliminaries

Let x be a string of length n over a finite alphabet
Σ . A character at position i of x is represented with xi ,
where 1 ≤ i ≤ n. A substring of x from position i to j is
indicated as xi, j , i.e., xi, j = xi xi+1 . . . x j , for 1 ≤ i ≤ j ≤ n.
In biological sequences, Σ = {A, C, G, T }, in which A–T
and C–G are considered as complementary base pairs.
We use θ(x) to denote an inversion operation acting on
a string x, resulting in a reverse and complement of x.
For example, θ(A) = T , θ(T) = A, θ(G) = C , θ(C) = G
and θ(C G A) = T C G . In addition, we utilize τ (uv) = vu to
represent a transposition operation to exchange two non-
empty strings u and v . Note that the lengths of u and
v are required to be identical in some previous works
[2–4], but they may be different in this study. For conve-
nience, we call θ and τ as mutation operations. We also let
θi, j(x) = θ(xi, j) for 1 ≤ i ≤ j ≤ n and τi, j,k(x) = xk, j xi,k−1
for 1 ≤ i < k ≤ j ≤ n, where [i, j] is called a mutation range
for θi, j and τi, j,k .

For an integer 1 ≤ t ≤ n, we say that a mutation oper-
ation θi, j or τi, j,k covers t if i ≤ t ≤ j. Given two mutation
operations, they are non-overlapping if the intersection of
their mutation ranges is empty. In this study, we are only
interested in sets of non-overlapping mutation operations.
Given a set Θ of non-overlapping mutation operations and
a string x, let Θ(x) be the resulting string after consec-
utively applying the mutation operations in Θ on x. For
example, suppose that Θ = {τ1,3,2, θ5,5} and x = T AG AC .
Then we have Θ(x) = AGT AG .

M1[i, j] i = 1 2 3 4 5

j = 1 (1,1, A) (2,1, A) (3,1, A) (4,1, A) (5,1, A)

2 (1,2, T) (2,2, T) (3,2, T) (4,2, T) (5,2, T)

3 (1,3, C) (2,3, C) (3,3, C) (4,3, C) (5,3, C)

4 (1,4, T) (2,4, T) (3,4, T) (4,4, T) (5,4, T)

5 (1,5, G) (2,5, G) (3,5, G) (4,5, G) (5,5, G)

M2[i, j] i = 1 2 3 4 5

j = 1 (1,1, T) (2,1, T) (3,1, T) (4,1, T) (5,1, T)

2 (1,2, A) (2,2, A) (3,2, A) (4,2, A) (5,2, A)

3 (1,3, G) (2,3, G) (3,3, G) (4,3, G) (5,3, G)

4 (1,4, A) (2,4, A) (3,4, A) (4,4, A) (5,4, A)

5 (1,5, C) (2,5, C) (3,5, C) (4,5, C) (5,5, C)

Fig. 1. Mutation tables M1 and M2 for a given string x = T AG AC , where
the column is indexed by i and the row by j. Shaded entries respectively
represent the inversion θ1,3(x) on M1 and the transposition operation
τ1,5,4(x) on M2.

Definition 1 (Non-overlapping inversion and transposition dis-
tance). Given two strings x and y of the same length, the
non-overlapping inversion and transposition distance (sim-
ply called mutation distance) between x and y, denoted
by md(x, y), is defined as the minimum number of non-
overlapping inversion and transposition operations used to
transform x into y. If there does not exist any set of non-
overlapping mutation operations that converts x into y,
then md(x, y) is infinite. Formally,

md(x, y) =
⎧⎨
⎩

min{|Θ| : Θ(x) = y}
if ∃Θ such that Θ(x) = y

∞ otherwise

For example, let x = T AG AC and y = T A AC G . Clearly,
there are only two sets of mutation operations Θ1 =
{θ1,2, τ3,5,4} and Θ2 = {τ3,5,4} such that Θ1(x) = y and
Θ2(x) = y. Therefore, md(x, y) = |Θ2| = 1.

3. The algorithm

Basically, a transposition (respectively, inversion) oper-
ation acting on a string x can be considered as a permu-
tation of characters in x (respectively, complement of x).
From this view point, a mutation operation actually com-
prises several sub-operations, called as mutation fragments,
each of which is denoted either by a tuple (i, j, x j) or
(i, j, θ(x j)). The mutation fragment (i, j, x j) (respectively,
(i, j, θ(x j))) means that x j (respectively, complement of x j)
is moved into the position i in the resulting string obtained
when applying the mutation operation on x. For conve-
nience, we arrange all possible mutation fragments in two
n × n two-dimensional tables M1 and M2, called mutation
tables of x, as follows.

• M1[i, j] = (i, j, θ(x j)) for i, j = 1, 2, . . . , n.
• M2[i, j] = (i, j, x j) for i, j = 1, 2, . . . , n.

For example, let x = T AG AC . Then its mutation tables
are shown in Fig. 1.

When an inversion operation θi, j applies on a string x,
we can decompose it into (j − i + 1) mutation frag-
ments F(θi, j, x, t) for i ≤ t ≤ j, where F(θi, j, x, t) =

Download English Version:

https://daneshyari.com/en/article/4950955

Download Persian Version:

https://daneshyari.com/article/4950955

Daneshyari.com

https://daneshyari.com/en/article/4950955
https://daneshyari.com/article/4950955
https://daneshyari.com

