Information Processing Letters 116 (2016) 744-749

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

An efficient algorithm for computing non-overlapping

inversion and transposition distance

Toan Thang Ta, Cheng-Yao Lin, Chin Lung Lu*

@ CrossMark

Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan

ARTICLE INFO ABSTRACT

Article history:

Received 17 March 2015

Received in revised form 8 March 2016
Accepted 16 July 2016

Available online 21 July 2016
Communicated by M. Chrobak

Keywords:

Algorithms
Computational biology
Inversion
Transposition
Mutation distance

Given two strings of the same length n, the non-overlapping inversion and transposition
distance (also called mutation distance) between them is defined as the minimum number
of non-overlapping inversion and transposition operations used to transform one string into
the other. In this study, we present an O (n®) time and O (n?) space algorithm to compute
the mutation distance of two input strings.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The dissimilarity of two strings is usually measured by
the so-called edit distance, which is defined as the mini-
mum number of edit operations necessary to convert one
string into the other. The commonly used edit operations
are character insertions, deletions and substitutions. In bi-
ological application, the aforementioned edit operations
correspond to point mutations of DNA sequences (i.e., mu-
tations at the level of individual nucleotides). From evolu-
tionary point of view, however, DNA sequences may evolve
by large-scale mutations (also called rearrangements, i.e.,
mutations at the level of sequence fragments) [6], such as
inversions (i.e., replacing a fragment of DNA sequence by
its reverse complement) and transpositions (i.e.,, moving a
fragment of DNA sequence from one location to another or,
equivalently, exchanging two adjacent and non-overlapping
fragments on DNA sequence). Note that a large-scale muta-

* Corresponding author.
E-mail addresses: toanthanghy@gmail.com (T.T. Ta),
begoingto0830@gmail.com (C.-Y. Lin), cllu@cs.nthu.edu.tw (C.L. Lu).

http://dx.doi.org/10.1016/j.ipl.2016.07.004
0020-0190/© 2016 Elsevier B.V. All rights reserved.

tion that replaces a fragment of DNA sequence only by its
reverse (without complement) is called a reversal. Based
on large-scale mutation operations, the dissimilarity (or
mutation distance) between two strings can be defined to
be the minimum number of large-scale mutation opera-
tions used to transform one string to the other. Cantone
et al. [1] introduced an O (nm) time and O(m?) space al-
gorithm to solve an approximate string matching problem
with non-overlapping reversals, which is to find all lo-
cations of a given text that match a given pattern with
non-overlapping reversals, where n is the length of the
text and m is the length of the pattern. In this problem,
two equal-length strings are said to have a match with non-
overlapping reversals if one string can be transformed into
the other using any finite sequence of non-overlapping re-
versals. It should be noted that the number of the used
non-overlapping reversals in the algorithm proposed by
Cantone et al. [1] is not required to be less than or
equal to a fixed non-negative integer. In [1], Cantone et
al. also presented another algorithm whose average-case
time complexity is O(n). Cantone et al. [2] studied the
same problem by considering both non-overlapping rever-

http://dx.doi.org/10.1016/j.ipl.2016.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:toanthanghy@gmail.com
mailto:begoingto0830@gmail.com
mailto:cllu@cs.nthu.edu.tw
http://dx.doi.org/10.1016/j.ipl.2016.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.07.004&domain=pdf

TT. Ta et al. / Information Processing Letters 116 (2016) 744-749 745

sals and transpositions, where they called transpositions
as translocations and the lengths of two exchanged ad-
jacent fragments are constrained to be equivalent. They
finally designed an algorithm to solve this problem in
0(nm?) time and O(m?) space. For the above problem,
Grabowski et al. [4] gave another algorithm whose worst-
case time and space are O(nm?) and O (m), respectively.
Moreover, they proved that their algorithm has an O(n)
average time complexity. Recently, Huang et al. [5] stud-
ied the above approximate string matching problem under
non-overlapping reversals by further restricting the num-
ber of the used reversals not to exceed a given positive
integer k. They proposed a dynamic programming algo-
rithm to solve this problem in O(nm?2) time and O(m?2)
space.

In this work, we are interested in the computation of
the mutation distance between two strings of the same
length under non-overlapping inversions and transposi-
tions (i.e., non-overlapping inversion and transposition
distance), where the lengths of two adjacent and non-
overlapping fragments exchanged by a transposition can
be different. For this problem, we devise an algorithm
whose time and space complexities are 0(n%) and 0 (n?),
respectively, where n is the length of two input strings.
The rest of the paper is organized as follows. In Sec-
tion 2, we provide some notations that are helpful when
we present our algorithm later. Next, we develop the main
algorithm and also analyze its time and space complex-
ities in Section 3. Finally, we have a brief conclusion in
Section 4.

2. Preliminaries

Let x be a string of length n over a finite alphabet
Y. A character at position i of x is represented with x;,
where 1 <i <n. A substring of x from position i to j is
indicated as x; j, i.e, X; j = XjXjt1...Xj, for 1 <i<j<n.
In biological sequences, ¥ = {A,C,G, T}, in which A-T
and C-G are considered as complementary base pairs.
We use 6(x) to denote an inversion operation acting on
a string x, resulting in a reverse and complement of x.
For example, 8(A) =T, 6(T) = A, 6(G) =C, 6(C) =G
and 6(CGA) = TCG. In addition, we utilize T(uv) = vu to
represent a transposition operation to exchange two non-
empty strings u and v. Note that the lengths of u and
v are required to be identical in some previous works
[2-4], but they may be different in this study. For conve-
nience, we call & and t as mutation operations. We also let
0i,j(x) =0(x; ;) for 1 <i<j<n and 7 jk(X) = Xk, jXik-1
for 1 <i <k < j<n, where [i, j] is called a mutation range
for 6; ; and T; j .

For an integer 1 <t <n, we say that a mutation oper-
ation 6; j or T; j i covers t if i <t < j. Given two mutation
operations, they are non-overlapping if the intersection of
their mutation ranges is empty. In this study, we are only
interested in sets of non-overlapping mutation operations.
Given a set ® of non-overlapping mutation operations and
a string x, let ®(x) be the resulting string after consec-
utively applying the mutation operations in & on x. For
example, suppose that ® = {113,655} and x = TAGAC.
Then we have ®(x) = AGTAG.

Mli, j] i=1 2 3 4 5
j=1 (1,1, A) 2,1,A) 3,1, A) 4,1,A) 5,1,A)
2 1,2,T) 2,2,T) 3,2,T) 4,2,T) (5,2,T)
3 (1,3,0) (2,3,0) 3,3,0) 4,3,0) 5,3,0)
4 (1,4,7) (2,4,7) 3,4,7) 4,4,T) (5,4,T)
5 (1,5,G) (2,5,G) 3,5,6) (4,5,G) (5,5,G)
Myli, j1 i=1 2 3 4 5

=1 1,1,T) 2,1,T) 3,1,T) (4,1,T) (5,1,T)

(1,2, A) 2,2,A) 3,2,A) 4,2,A) (5,2,A)
(1,3,6) 2,3,6) 3,3,6) (4,3,G) (5,3,6)
(1,4, A) 2,4, A) 3,4, A) (4,4,A) (5,4,A)
(1,5,0) 2,5,0) 3,50 (4,5,0) (5,5,0)

v W N =

Fig. 1. Mutation tables M; and M, for a given string x = TAGAC, where
the column is indexed by i and the row by j. Shaded entries respectively
represent the inversion 6;3(x) on M; and the transposition operation
71,5.4(X) on M.

Definition 1 (Non-overlapping inversion and transposition dis-
tance). Given two strings x and y of the same length, the
non-overlapping inversion and transposition distance (sim-
ply called mutation distance) between x and y, denoted
by md(x, y), is defined as the minimum number of non-
overlapping inversion and transposition operations used to
transform x into y. If there does not exist any set of non-
overlapping mutation operations that converts x into y,
then md(x, y) is infinite. Formally,

min{|@|: O (x) =y}
if3® suchthat ®(x) = y
oo otherwise

md(x, y) =

For example, let x=TAGAC and y = TAACG. Clearly,
there are only two sets of mutation operations &1 =
{612, 7354} and @ = {1354} such that @;(x) = y and
®,(x) = y. Therefore, md(x, y) = |®,| =1.

3. The algorithm

Basically, a transposition (respectively, inversion) oper-
ation acting on a string x can be considered as a permu-
tation of characters in x (respectively, complement of x).
From this view point, a mutation operation actually com-
prises several sub-operations, called as mutation fragments,
each of which is denoted either by a tuple (i, j,x;) or
(i, j,0(x;)). The mutation fragment (i, j, x;) (respectively,
(i, j,0(x;))) means that x; (respectively, complement of x;)
is moved into the position i in the resulting string obtained
when applying the mutation operation on x. For conve-
nience, we arrange all possible mutation fragments in two
n x n two-dimensional tables My and M, called mutation
tables of x, as follows.

o Mi[i,jl=(,j,0(k;))) fori,j=1,2,...,n.
o Ma[i, jl=(,j,xj) fori,j=1,2,...,n.

For example, let x = TAGAC. Then its mutation tables
are shown in Fig. 1.

When an inversion operation 6; ; applies on a string x,
we can decompose it into (j — i 4+ 1) mutation frag-
ments F(6;;,x,t) for i <t < j, where F(;j,x,t) =

Download English Version:

https://daneshyari.com/en/article/4950955

Download Persian Version:

https://daneshyari.com/article/4950955

Daneshyari.com

https://daneshyari.com/en/article/4950955
https://daneshyari.com/article/4950955
https://daneshyari.com

