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Glushkov’s nondeterministic finite automaton leads to efficient regular expression match-
ing. But it is memory greedy for long regular expressions. We develop space efficient 
representations for the deterministic finite automata obtained from Glushkov automata. 
The approach reduces the space of the DFA from O (m2m) bits to O (m2k) bits where k is 
the number of strings in the regular expression, m is the number of characters excluding 
operators. The average space usage is O (m(1 + 1/σ )k) bits where σ is the size of the al-
phabet. The state transition function runs in constant time when the length of a word is 
not less than m. Experiments show that our method is as efficient as the previous method 
and uses less space.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High performance regular expression matching is one 
of the central problems for applications such as network 
security [4,20] and bioinformatics [14]. Recently, much re-
search focuses on optimizing regular expression matching 
by reducing the space usage [20], increasing the memory 
bandwidth [15] and enhancing the performance either by 
algorithm design or by hardware [4,6–9]. Throughout the 
paper, we denote the length of our regular expression by m
(without counting the operators), the length of the text 
by n, and the alphabet by �.

Nondeterministic finite automaton (NFA) is a major 
technique for regular expression matching. Thompson’s 
classic NFA construction [21,22] builds an NFA of O (m)

states. It takes O (mn) time to search for occurrences 
of the regular expression in a text using the NFA. My-
ers [18] reduced the time complexity of Thompson’s al-
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gorithm and gave an O (mn/ log n + (n + m) logn) time so-
lution on a log n-bit uniform RAM. Bille and Thorup [8]
improved the time complexity of Thompson’s algorithm by 
a log1.5 n/ log log n factor. Recently, Bille and Thorup [9]
presented a regular expression matching algorithm that 
processes each character in O (k log w

w + log k) time using 
O (m) space on a RAM with w-bit words, where k is the 
number of strings in the regular expression.

An alternative NFA construction approach for regu-
lar expressions was presented by Glushkov [13,5]. The 
Glushkov automaton of a regular expression is an ε-tran-
sition free NFA of m +1 states. The corresponding DFA uses 
much less space than the worst case using Thompson’s 
NFA. Navarro and Raffinot [19] (NR for short) presented 
a bit-parallel implementation of the DFA obtained from 
Glushkov’s NFA using O (m2m) bits. The approach is very 
efficient for short regular expressions. But for expressions 
with large m, the space usage becomes too large. The NR-
method uses the table splitting technique to reduce the 
space at the cost of increasing the searching time. Cham-
parnaud et al. [11] improved the space of the NR-method. 
But the worst case space is still O (m2m) bits.
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1.1. Our results

We present an implementation of Glushkov’s NFA that 
uses less space than the NR-method while is as efficient 
as the NR-method. We explore properties of Glushkov au-
tomata and develop a new state transition method. The 
idea is to classify the states into two classes. We use Shift-
And to change the set of active states of the first class and 
use minimal perfect hash functions (MPHFs) [12] to change 
the set of active states of the second class. The space usage 
is O (m�a∈�2e(a)) bits where e(a) is the number of strings 
ending with a in the regular expression. The worst case 
space is O (m2k) bits. If we assume a uniform frequency 
distribution of individual characters in regular expressions, 
the average space usage is m(1 + 1/σ )k bits. The time for 
state transition is constant when m ≤ w and O (�m/w�)
otherwise.

2. Background

Regular expressions are constructed from symbols via 
concatenation, union (|), and Kleene star (∗) operations. 
The set of regular expressions over an alphabet � =
{1, 2, . . . , σ } is defined as follows. (i) For a ∈ � or a = ε, 
a is a regular expression. (ii) For regular expressions R
and S , (R)|(S), (R)(S), and (R)∗ are regular expressions 
where (R)(S) denotes the concatenation of R and S . The 
language determined by a regular expression R is denoted 
by L(R). The set Pos(R) = {1, . . . , m} is the set of positions 
in R not counting operators. Denote by σy the indexed 
character of R that is at position y ∈ Pos(R), and define 
σ0 = ε.

The model of computation we adopt is a random ac-
cess machine with w-bit words, and the instruction set 
includes unit-cost addition “+”, subtraction “−”, multipli-
cation “×”, and bit-wise Boolean operations including or
“|”, and “&”, bit complementation “¬”, and bit shift “<<” 
(“>>”).

We denote the substring t[i] . . . t[ j] (i ≤ j) of a string 
t = t[1]t[2] . . . t[n] by t[i, j]. A bitvector is a sequence of 
bits. For a bitvector X and an integer c > 0, Xc denotes 
the repetition of X for c times.

2.1. Glushkov’s NFA

We give a brief introduction to Glushkov’s NFA fol-
lowing the notions in [19]. More details can be found 
in [13,5,19]. The Glushkov NFA for a regular expression 
R E recognizes L(R E). Each position of R E corresponds 
to a state of the Glushkov NFA (the initial state cor-
responds to 0). The m + 1 states are labeled from 0 
to m. For a state x ∈ {0, . . . , m}, define F ollow(x) = {y ∈
Pos(RE), ∃u, v ∈ �∗, uσxσy v ∈ L(RE)}, which contains all 
the states reached by going the transitions from x. Define 
Last = {x ∈ Pos(RE), ∃u ∈ �∗, uσx ∈ L(RE)}, which is the set 
of final states. Fig. 1 is an example of the Glushkov NFA.

2.2. Navarro and Raffinot’s implementation of Glushkov NFAs

Navarro and Raffinot [19] presented a compact repre-
sentation of the DFA corresponding to a Glushkov NFA. 

Fig. 1. The Glushkov automaton built on the regular expression (ab|
ad)((acb|b)∗). State 0 is the initial state. Double-circled states are final.

The sets of NFA states are represented by bit vectors of 
m + 1 bits; if state i belongs to the set, the i-th bit is 1 
otherwise 0. In scanning a text, the set of current active 
Glushkov NFA states represents a DFA state; we denote the 
set of active states by a bit vector D . In the rest of the pa-
per, we will use sets of NFA states, position sets and bit 
vectors interchangeably.

The NR-method makes state transitions using two ta-
bles: the first one is B : � → 2m+1, such that B[a] is the 
set of states whose incoming transitions are labeled by a. 
The second is a table T : 2m+1 → 2m+1. Given the current 
active state set D , define T [D] as the set of states that can 
be reached from states in D , that is, T [D] = ⋃

i∈D Follow(i). 
The state transition function of the DFA obtained from the 
Glushkov’s NFA is as follows.

δ(D,a) = T [D]&B[a]. (1)

Table T uses (m + 1)2m+1 bits. Table B uses (m + 1)σ
bits. The number of total bits required is (m + 1)(2m+1 +
σ). By a table splitting approach, the space can be reduced 
to O (t2m/tm) bits while the searching time increases to 
O (tn), where t is the number of tables with 2m/t entries 
split from T . The NR-method can process character classes 
by treating a character class as a single letter.

Mapping from states to bits. In Glushkov’s construction, 
each non-operator character (or position) in the regular 
expression uniquely corresponds to a state. In the NR 
method, the i-th non-operator character is mapped to 
state i, and state i is mapped to the i-th bit in D . Actu-
ally, the transition function in (1) works with any bijection 
from states to bits, as long as all bitvectors in B and T use 
the same bijection as D .

2.3. Minimal perfect hash function

A perfect hash function (PHF) maps the keys in set S
to unique values in the range [0, v − 1]. A minimal perfect 
hash function (MPHF) is a PHF with |S| = v . The recent 
result of MPHF [10] on a unit-cost RAM obtains a space 
usage of approximately 2.62n + o(n) bits where n is the 
number of keys. The evaluation of this MPHF requires con-
stant time for keys with constant number of words. The 
construction algorithm of the MPHF runs in O (n) time. In 
this paper, we will use these minimal perfect hash func-
tions without going into the details.

3. Heterogeneous transition function

In this section, we present space economical repre-
sentations of the DFA obtained from Glushkov’s NFA. We 
employ the Shift-And approach and the hash function. 
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