
Information Processing Letters 116 (2016) 750–756

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Compact representations of automata for regular expression

matching

Meng Zhang a,∗, Yi Zhang b, Chen Hou a

a College of Computer Science and Technology, Jilin University, Changchun, China
b Department of Computer Science, Jilin Business and Technology College, Changchun, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 September 2015
Received in revised form 19 January 2016
Accepted 9 July 2016
Available online 26 July 2016
Communicated by M. Chrobak

Keywords:
Algorithms
String matching
Regular expressions

Glushkov’s nondeterministic finite automaton leads to efficient regular expression match-
ing. But it is memory greedy for long regular expressions. We develop space efficient
representations for the deterministic finite automata obtained from Glushkov automata.
The approach reduces the space of the DFA from O (m2m) bits to O (m2k) bits where k is
the number of strings in the regular expression, m is the number of characters excluding
operators. The average space usage is O (m(1 + 1/σ)k) bits where σ is the size of the al-
phabet. The state transition function runs in constant time when the length of a word is
not less than m. Experiments show that our method is as efficient as the previous method
and uses less space.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High performance regular expression matching is one
of the central problems for applications such as network
security [4,20] and bioinformatics [14]. Recently, much re-
search focuses on optimizing regular expression matching
by reducing the space usage [20], increasing the memory
bandwidth [15] and enhancing the performance either by
algorithm design or by hardware [4,6–9]. Throughout the
paper, we denote the length of our regular expression by m
(without counting the operators), the length of the text
by n, and the alphabet by �.

Nondeterministic finite automaton (NFA) is a major
technique for regular expression matching. Thompson’s
classic NFA construction [21,22] builds an NFA of O (m)

states. It takes O (mn) time to search for occurrences
of the regular expression in a text using the NFA. My-
ers [18] reduced the time complexity of Thompson’s al-

* Corresponding author.
E-mail addresses: zhangmeng@jlu.edu.cn (M. Zhang),

whdzy2000@vip.sina.com (Y. Zhang), 445962340@qq.com (C. Hou).

gorithm and gave an O (mn/ log n + (n + m) logn) time so-
lution on a log n-bit uniform RAM. Bille and Thorup [8]
improved the time complexity of Thompson’s algorithm by
a log1.5 n/ log log n factor. Recently, Bille and Thorup [9]
presented a regular expression matching algorithm that
processes each character in O (k log w

w + log k) time using
O (m) space on a RAM with w-bit words, where k is the
number of strings in the regular expression.

An alternative NFA construction approach for regu-
lar expressions was presented by Glushkov [13,5]. The
Glushkov automaton of a regular expression is an ε-tran-
sition free NFA of m +1 states. The corresponding DFA uses
much less space than the worst case using Thompson’s
NFA. Navarro and Raffinot [19] (NR for short) presented
a bit-parallel implementation of the DFA obtained from
Glushkov’s NFA using O (m2m) bits. The approach is very
efficient for short regular expressions. But for expressions
with large m, the space usage becomes too large. The NR-
method uses the table splitting technique to reduce the
space at the cost of increasing the searching time. Cham-
parnaud et al. [11] improved the space of the NR-method.
But the worst case space is still O (m2m) bits.

http://dx.doi.org/10.1016/j.ipl.2016.07.003
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:zhangmeng@jlu.edu.cn
mailto:whdzy2000@vip.sina.com
mailto:445962340@qq.com
http://dx.doi.org/10.1016/j.ipl.2016.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.07.003&domain=pdf

M. Zhang et al. / Information Processing Letters 116 (2016) 750–756 751

1.1. Our results

We present an implementation of Glushkov’s NFA that
uses less space than the NR-method while is as efficient
as the NR-method. We explore properties of Glushkov au-
tomata and develop a new state transition method. The
idea is to classify the states into two classes. We use Shift-
And to change the set of active states of the first class and
use minimal perfect hash functions (MPHFs) [12] to change
the set of active states of the second class. The space usage
is O (m�a∈�2e(a)) bits where e(a) is the number of strings
ending with a in the regular expression. The worst case
space is O (m2k) bits. If we assume a uniform frequency
distribution of individual characters in regular expressions,
the average space usage is m(1 + 1/σ)k bits. The time for
state transition is constant when m ≤ w and O (�m/w�)
otherwise.

2. Background

Regular expressions are constructed from symbols via
concatenation, union (|), and Kleene star (∗) operations.
The set of regular expressions over an alphabet � =
{1, 2, . . . , σ } is defined as follows. (i) For a ∈ � or a = ε,
a is a regular expression. (ii) For regular expressions R
and S , (R)|(S), (R)(S), and (R)∗ are regular expressions
where (R)(S) denotes the concatenation of R and S . The
language determined by a regular expression R is denoted
by L(R). The set Pos(R) = {1, . . . , m} is the set of positions
in R not counting operators. Denote by σy the indexed
character of R that is at position y ∈ Pos(R), and define
σ0 = ε.

The model of computation we adopt is a random ac-
cess machine with w-bit words, and the instruction set
includes unit-cost addition “+”, subtraction “−”, multipli-
cation “×”, and bit-wise Boolean operations including or
“|”, and “&”, bit complementation “¬”, and bit shift “<<”
(“>>”).

We denote the substring t[i] . . . t[j] (i ≤ j) of a string
t = t[1]t[2] . . . t[n] by t[i, j]. A bitvector is a sequence of
bits. For a bitvector X and an integer c > 0, Xc denotes
the repetition of X for c times.

2.1. Glushkov’s NFA

We give a brief introduction to Glushkov’s NFA fol-
lowing the notions in [19]. More details can be found
in [13,5,19]. The Glushkov NFA for a regular expression
R E recognizes L(R E). Each position of R E corresponds
to a state of the Glushkov NFA (the initial state cor-
responds to 0). The m + 1 states are labeled from 0
to m. For a state x ∈ {0, . . . , m}, define F ollow(x) = {y ∈
Pos(RE), ∃u, v ∈ �∗, uσxσy v ∈ L(RE)}, which contains all
the states reached by going the transitions from x. Define
Last = {x ∈ Pos(RE), ∃u ∈ �∗, uσx ∈ L(RE)}, which is the set
of final states. Fig. 1 is an example of the Glushkov NFA.

2.2. Navarro and Raffinot’s implementation of Glushkov NFAs

Navarro and Raffinot [19] presented a compact repre-
sentation of the DFA corresponding to a Glushkov NFA.

Fig. 1. The Glushkov automaton built on the regular expression (ab|
ad)((acb|b)∗). State 0 is the initial state. Double-circled states are final.

The sets of NFA states are represented by bit vectors of
m + 1 bits; if state i belongs to the set, the i-th bit is 1
otherwise 0. In scanning a text, the set of current active
Glushkov NFA states represents a DFA state; we denote the
set of active states by a bit vector D . In the rest of the pa-
per, we will use sets of NFA states, position sets and bit
vectors interchangeably.

The NR-method makes state transitions using two ta-
bles: the first one is B : � → 2m+1, such that B[a] is the
set of states whose incoming transitions are labeled by a.
The second is a table T : 2m+1 → 2m+1. Given the current
active state set D , define T [D] as the set of states that can
be reached from states in D , that is, T [D] = ⋃

i∈D Follow(i).
The state transition function of the DFA obtained from the
Glushkov’s NFA is as follows.

δ(D,a) = T [D]&B[a]. (1)

Table T uses (m + 1)2m+1 bits. Table B uses (m + 1)σ
bits. The number of total bits required is (m + 1)(2m+1 +
σ). By a table splitting approach, the space can be reduced
to O (t2m/tm) bits while the searching time increases to
O (tn), where t is the number of tables with 2m/t entries
split from T . The NR-method can process character classes
by treating a character class as a single letter.

Mapping from states to bits. In Glushkov’s construction,
each non-operator character (or position) in the regular
expression uniquely corresponds to a state. In the NR
method, the i-th non-operator character is mapped to
state i, and state i is mapped to the i-th bit in D . Actu-
ally, the transition function in (1) works with any bijection
from states to bits, as long as all bitvectors in B and T use
the same bijection as D .

2.3. Minimal perfect hash function

A perfect hash function (PHF) maps the keys in set S
to unique values in the range [0, v − 1]. A minimal perfect
hash function (MPHF) is a PHF with |S| = v . The recent
result of MPHF [10] on a unit-cost RAM obtains a space
usage of approximately 2.62n + o(n) bits where n is the
number of keys. The evaluation of this MPHF requires con-
stant time for keys with constant number of words. The
construction algorithm of the MPHF runs in O (n) time. In
this paper, we will use these minimal perfect hash func-
tions without going into the details.

3. Heterogeneous transition function

In this section, we present space economical repre-
sentations of the DFA obtained from Glushkov’s NFA. We
employ the Shift-And approach and the hash function.

Download English Version:

https://daneshyari.com/en/article/4950956

Download Persian Version:

https://daneshyari.com/article/4950956

Daneshyari.com

https://daneshyari.com/en/article/4950956
https://daneshyari.com/article/4950956
https://daneshyari.com

