
Please cite this article in press as: J. Gąsior, F. Seredyński, A Sandpile cellular automata-based scheduler and load balancer, J. Comput.
Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.08.005

ARTICLE IN PRESSG Model
JOCS-538; No. of Pages 9

Journal of Computational Science xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

A Sandpile cellular automata-based scheduler and load balancer

Jakub Gąsior ∗, Franciszek Seredyński
Department of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland

a r t i c l e i n f o

Article history:
Received 4 April 2016
Received in revised form 13 July 2016
Accepted 9 August 2016
Available online xxx

Keywords:
Cellular automata
Distributed systems
Self-organization
Scheduling and load-balancing

a b s t r a c t

We present in this paper a novel load balancing and rescheduling approach based on the concept of
the Sandpile cellular automaton: a decentralized multi-agent system working in a critical state at the
edge of chaos. Our goal is providing fairness between concurrent job submissions in highly parallel and
distributed environments such as currently built cloud computing systems by minimizing slowdown of
individual applications and dynamically rescheduling them to the best suited resources. The algorithm
design is experimentally validated by a number of numerical experiments showing the effectiveness and
scalability of the scheme in the presence of a large number of jobs and resources and its ability to react
to dynamic changes in real time.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing (CC) is one of the emerging developments
in distributed, service-oriented, trusted computing. It offers the
potential for sharing and aggregation of different resources such as
computers, storage systems, data centers and distributed servers.
The goal of the cloud-based architecture is to provide a form of
elasticity; the ability to expand and contract capacity on-demand.
That means there needs to be some mechanism in place to balance
requests between two or more instances of client’s applications.

We propose a decentralized and self-organizing multi-agent
system based on the Sandpile cellular automata (CA) model. Given a
set of agents, which have only partial knowledge of local resources
and submitted workload, it is possible to design a set of simple local
rules, so that a smart behavior emerges from them at a global sys-
tem level. Its role is to: (a) balance the workload within each local
neighborhood by identifying source and destination node pairs and
determining the amount of workload to be transferred between
them, and (b) balance the workload across the entire system.

By localizing the balancing domain to a single neighborhood
we are able to reduce the overhead of the balancing process, as
well as ensure a balanced workload for the entire platform. This
is accomplished by introducing overlapping domains, whereby
excess workload can diffuse from more heavily loaded neighbor-
hoods into lightly loaded ones. Potentially, more accurate migration

∗ Corresponding author.
E-mail address: j.gasior@uksw.edu.pl (J. Gąsior).

strategies are made possible by larger neighborhoods. However,
larger balancing domains may increase the aging period of infor-
mation and cause the load balancing overhead to be more unevenly
distributed.

Because of the resource heterogeneity and communication
overheads existing in CC systems, we take into account features
such as processing power of individual CC nodes and communi-
cation latency between them. The main goal of our algorithm is
to reduce the average response time of arriving jobs by equalizing
the Slowdown between neighboring CC nodes. The performance of
our scheme is evaluated in terms of several performance metrics
in relation to multiple variations of arrival and processing times as
well as the number of submitted jobs.

The remainder of this paper is organized as follows. In Section 2,
we present the works related to the distributed scheduling and load
balancing in the grid and cloud computing systems. In Section 3,
we describe the proposed cloud system model. Section 4 presents
the proposed solution of dynamic load balancing and scheduling
scheme based on the Sandpile CA model. The experimental evalu-
ation of the proposed approach is given in Section 5. We end the
paper in Section 6 with some conclusions and indications for future
work.

2. State of the art

Distributed scheduling has been widely studied in the con-
text of real-time systems, when jobs have deadline constraints.
Among others, in [1] authors proposed a distributed algorithm to
solve general constraint optimization problem with a guaranteed

http://dx.doi.org/10.1016/j.jocs.2016.08.005
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.08.005
dx.doi.org/10.1016/j.jocs.2016.08.005
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:j.gasior@uksw.edu.pl
dx.doi.org/10.1016/j.jocs.2016.08.005

Please cite this article in press as: J. Gąsior, F. Seredyński, A Sandpile cellular automata-based scheduler and load balancer, J. Comput.
Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.08.005

ARTICLE IN PRESSG Model
JOCS-538; No. of Pages 9

2 J. Gąsior, F. Seredyński / Journal of Computational Science xxx (2016) xxx–xxx

convergence using only localized, asynchronous communication
between agents involved in this process. However, in large-scale
systems, one cannot hope to reach such an optimality on-the-
fly and would rather employ heuristics inspired by emergent
peer-to-peer techniques [2]. To cope with node volatility, sev-
eral mechanisms have been proposed, such as checkpointing and
migration [3,4]. These mechanisms allow to efficiently manage
computing resources that are likely to fail at any given time.
Therefore, the application of robust distributed architectures and
adaptation of peer-to-peer systems are becoming some of the most
widespread methods in that area [2,5,6].

Due to the distributed nature of such systems, several concur-
rent jobs originating from different users are likely to compete for
the resources. Traditionally, schedulers aim at minimizing the over-
all completion time of a job [6]. However, in a multi-user setting, it
is important to maintain some fairness between users: we do not
want to favor a user with a large number of small jobs compared to
another with fewer larger jobs. Similarly, if jobs can be submitted
at different entry points of the distributed system, we do not want
that the location of the user to impact his experienced running time
[2].

There are several studies complementary to our work, which
focus on how to share the available resources among several users.
For example, in [7] authors employed a scheduling policy utilizing
the solution to a linear programming problem in order to maxi-
mize the system capacity. Closer to our problem, Viswanathan in [8]
proposed a distributed scheduling strategy specifically designed to
handle large volumes of computationally intensive and arbitrarily
divisible workloads submitted for processing involving multiple
sources and processing nodes. In [9] authors proposed a distributed
scheduling solution ensuring a fair and efficient use of the avail-
able resources by providing a similar share of the platform to every
application through stretch optimization.

In [10] authors proposed a skeleton for dynamic load balancing
through gossiping: rather than a fully-operative scheduling sys-
tem, the authors aim at illustrating the application potentials of
gossiping protocols. They demonstrated the utility of applying an
averaging component along with an overlay component to obtain
high scheduling performance with respect to the amount of trans-
ferred workload that is often indistinguishable from the optimal
case. Similarly, in [11] authors described a distributed load balanc-
ing algorithm based on building a consensus between nodes. To
reach the consensus nodes communicate within a homogeneous
architecture via gossiping protocol.

Finally, in [12] authors employed a Sandpile model for non-
clairvoyant load-balancing of jobs in large-scale decentralized
systems. This approach has a strong connection with the one
presented here: it works with two different interconnection topolo-
gies, based on a ring and a small-world graph and aims to minimize
the sizes and quantities of the avalanches by using a gossiping-
based version of the multi-agent system. Instead of propagating
a real avalanche, the gossiping protocol forwards the avalanche
virtually until a new state of equilibrium is found. The proposed
solution was found to reduce the overhead of intermediate migra-
tions and increase the overall throughput of the system, however it
employed a simple First In, First Out (FIFO) local allocation scheme
and did not consider the impact of resulting rescheduling events
on the overall performance of the considered platform.

3. Cloud model

3.1. System & user model

Our system model is based on the architecture introduced in [13]
and consists of a set of geographically distributed cloud nodes M1,

Fig. 1. Example of the CC system. A set of parallel machines (a) and the multi-
threaded job model (b).

M2, . . ., Mm, which are connected to each other via a wide area net-
work. Each node Mi is described by a parameter mi, which denotes
the number of identical processors Pi and its computational power
si, characterized by a number of operations per unit of time it is
capable of performing. Fig. 1(a) depicts an exemplary set of parallel
machines in the CC system.

Individual users (U1, U2, . . ., Un) submit their jobs to the system,
expecting their completion before a required deadline. Job (denoted
as Jj

k
) is jth job produced (and owned) by user Uk. Jk stands for the

set of all jobs produced by user Uk, while nk = |Jk| is the number
of such jobs. Each job has varied parameters defined as a tuple <

rj
k
, sizej

k
, tj

k
, dj

k
>, specifying its release date rj

k
; its size 1 ≤ sizej

k
≤

mm, that is referred to as its processor requirements or degree of
parallelism; its execution requirements tj

k
defined by a number of

operations and deadline dj
k
.

Rigid jobs require a fixed number of processors for parallel exe-
cution: this number is not changed until the job is completed. We
assume that job Jj

k
can only run on machine Mi if sizej

k
≤ mi holds,

that is, we do not allow multi-site execution and co-allocation
of processors from different machines. We assume a space shar-
ing scheduling approach, therefore a parallel job Jj

k
is executed

on exactly sizej
k

disjoint processors without preemptions, while

pi,j
k
= tj

k
/si defines job’s Jj

k
execution time on machine Mi. Fig. 1(b)

shows an example of the multi-threaded job model.

3.2. Problem formulation

In this section, we formally define the problem we target. Our
goal is to design a dynamic and fully decentralized scheduling archi-
tecture oriented to on-line distributed platforms. We are interested
in a proactive scheduling scheme, meaning that it should not inter-
fere with the actual assignment of jobs unless the workload is
detected to be in a non-equilibrium state [12]. We are interested in
modeling a distributed scheduling scheme on such a complex CC
system, i.e., allocating a limited quantity of independently managed
resources to a specific number of independent user jobs (Virtual
Machines (VMs) or applications/jobs to be run, etc.) in a limited
operation time, without the need of any centralized coordination
and control facility.

The goal of the scheduler is to find the allocation and the time of
execution for each job. The distribution of the jobs must be done in
such a way that the system’s throughput is optimized. To do so, an
optimal trade-off between the processing overhead and the degree
of knowledge used in the balancing process must be sought. All
scheduling and load balancing decisions must be taken locally by
the agents assigned to local cloud resources. Formally, the objective
is to allocate a batch of local jobs to the available cloud nodes Mi and
minimize the global system Slowdown ςmax thereby enforcing a fair
trade-off between all submitted jobs. We consider minimization of
the time ςi

max on each cloud node Mi over the system in such a way

dx.doi.org/10.1016/j.jocs.2016.08.005

Download English Version:

https://daneshyari.com/en/article/4951014

Download Persian Version:

https://daneshyari.com/article/4951014

Daneshyari.com

https://daneshyari.com/en/article/4951014
https://daneshyari.com/article/4951014
https://daneshyari.com

