
Journal of Computational Science 18 (2017) 46–56

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Efficient high degree polynomial root finding using GPU

Kahina Ghidouchea, Abderrahmane Sidera, Raphaël Couturierb,∗, Christophe Guyeuxb

a Laboratoire LIMED, Faculté des sciences exactes, Université de Bejaia, 06000 Bejaia, Algeria
b FEMTO-ST Institute, Univ. Bourgogne Franche-Comté (UBFC), France

a r t i c l e i n f o

Article history:
Received 7 November 2015
Received in revised form 28 October 2016
Accepted 9 December 2016
Available online 19 December 2016

Keywords:
Polynomial root finding
Iterative methods
Ehrlich–Aberth
Durand–Kerner
GPU

a b s t r a c t

Polynomials are mathematical algebraic structures that play a great role in science and engineering.
Finding the roots of high degree polynomials is computationally demanding. In this paper, we present
the results of a parallel implementation of the Ehrlich–Aberth algorithm for the root finding problem
for high degree polynomials on GPUs using CUDA and on multi-core processors using OpenMP. The
main result we achieved is to solve high degree polynomials (up to 1,000,000) efficiently. We also
compare the Ehrlich–Aberth method and the Durand–Kerner one on both full and sparse polynomials.
Accordingly, our second result is that the first method is much faster and more efficient. Last, but not
least, an original proof of the convergence of the asynchronous implementation for the EA method is
produced.

© 2016 Elsevier B.V. All rights reserved.

1. The problem of finding the roots of a polynomial

Polynomials are mathematical algebraic structures used in sci-
ence and engineering to capture physical phenomena and to
express any outcome in the form of a function of some unknown
variables. Formally speaking, a polynomial p(x) of degree n having
n coefficients in the complex plane C is:

p(x) =
n∑

i=0

aix
i, a0 /= 0. (1)

The root finding problem consists in finding all the n values of
the variable x for which p(x) is nullified. Such values are called zeros
of p. If zeros are ˛i, i = 1, . . ., n, the p(x) can be written as:

p(x) = an

n∏
i=1

(x − ˛i), an /= 0. (2)

The problem of finding a root is equivalent to that of
solving a fixed-point problem. To observe this, consider the

∗ Corresponding author.
E-mail addresses: kahina.ghidouche@univ-bejaia.dz (K. Ghidouche),

ar.sider@univ-bejaia.dz (A. Sider), raphael.couturier@univ-fcomte.fr (R. Couturier),
christophe.guyeux@univ-fcomte.fr (C. Guyeux).

fixed-point problem of finding the n-dimensional vector X such
that:

X = g(X)

where g : C
n −→ C

n. We can easily rewrite this fixed-point problem
as a root-finding problem by setting f(X) = X − g(X) and likewise we
can recast the root-finding problem into a fixed-point problem by
setting:

g(X) = f (X) − X.

It is often impossible to solve such nonlinear equation root-
finding problems analytically. When this occurs, we turn to
numerical methods to approximate the solution. Generally speak-
ing, algorithms for solving problems can be divided into two main
groups: direct methods and iterative methods.

Direct methods only exist for n ≤ 4, solved in closed form
by Cardano [1] in the mid-16th century. However, Abel [2] in
the early 19th century proved that polynomials of degree five
or more could not, in general, be solved by direct methods.
Since then, mathematicians have focused on numerical (iterative)
methods such as the famous Newton [3], and the Graeffe one
[4].

Later on, with the advent of electronic computers, other meth-
ods have been developed such as Jenkins–Traub [5], Larkin [6],

http://dx.doi.org/10.1016/j.jocs.2016.12.004
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.12.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2016.12.004&domain=pdf
mailto:kahina.ghidouche@univ-bejaia.dz
mailto:ar.sider@univ-bejaia.dz
mailto:raphael.couturier@univ-fcomte.fr
mailto:christophe.guyeux@univ-fcomte.fr
dx.doi.org/10.1016/j.jocs.2016.12.004

K. Ghidouche et al. / Journal of Computational Science 18 (2017) 46–56 47

Muller [7], and several others for the simultaneous approximation
of all the roots, starting with the Durand–Kerner (DK) method [8,9]:

DK: zk+1
i

= zk
i − p(zk

i
)∏

i /= j(z
k
i

− zk
j
)
, i = 1, . . ., n, (3)

where zk
i

is the ith root of the polynomial p at the iteration
k.

This formula was mentioned for the first time by Weiestrass [10]
as part of the fundamental theorem of Algebra and was rediscov-
ered by Ilieff [11], Docev [12], Durand [8], and Kerner [9]. Another
method, discovered by Borsch-Supan [13], and also described and
brought in the following form by Ehrlich [14] and Aberth [15], uses
a different iteration formula given as:

EA: zk+1
i

= zk
i − 1

p′(zk
i

)

p(zk
i

)
−

∑
i /= j

1
(zk

i
−zk

j
)

, i = 1, . . ., n, (4)

where p′(z) is the polynomial derivative of p evaluated in the point
z.

Aberth, Ehrlich, and Farmer–Loizou [16] have proven that the
Ehrlich–Aberth method (EA) has a cubic order of convergence for
simple roots whereas the Durand–Kerner has a quadratic order of
convergence. Moreover, the convergence time of iterative methods
drastically increases like the degrees of high polynomials, while it
is expected that the parallelization of these algorithms will reduce
the execution times.

Many authors have dealt with the parallelization of simulta-
neous methods, i.e., that find all the zeros simultaneously. Freeman
[17] implemented and compared DK, EA, and another method of the
fourth order proposed by Farmer and Loizou [16], on an 8-processor
linear chain, for polynomials of degree 8. The third method often
diverges, but the first two methods have a speed-up factor equal
to 5.5. Later, Freeman and Brankin [18] considered asynchronous
algorithms, in which each processor continues to update its approx-
imations even though the latest values of other roots have not yet
been received from the other processors. In contrast, synchronous
algorithms wait for the computation of all roots at a given itera-
tions before making a new one. Couturier et al. [19] proposed two
methods of parallelization for a shared memory architecture and
for a distributed memory one. They were able to compute the roots
of sparse polynomials of degree 10,000 in 430 seconds with only
8 personal computers and 2 communications per iteration. Com-
pared to sequential implementations where it takes up to 3300 s
to obtain the same results, the authors’ work experiment shows an
interesting speedup.

To our knowledge, no other work has been published regarding
the parallelization of this method or other ones before the emer-
gence of the Compute Unified Device Architecture (CUDA) [20], a
parallel computing platform and a programming model invented by
NVIDIA. The computing power of GPUs (Graphics Processing Units)
has exceeded that of CPUs. However, CUDA adopts a totally new
computing architecture to use the hardware resources provided by
a GPU in order to offer a stronger computing ability to the massive
data computing. First, Ghidouche et al. [21] proposed an imple-
mentation of the Durand–Kerner method for sparse polynomials
on GPU. Their main result shows that a parallel CUDA implementa-
tion is much faster than the sequential implementation on a single
CPU.

In this paper, we report on our ongoing research aiming at
proposing, implementing, and improving the EA iterative function
and the implementation of the Ehrlich–Aberth method to solve
high degree polynomials accurately and rapidly on GPUs. The main
contributions of this research work are:

• An adaptation of the exponential logarithm to improve the clas-
sical Ehrlich–Aberth iterative method, in order to be able to solve
sparse and full polynomials of high degree.

• A parallel implementation of Ehrlich–Aberth method on GPU for
sparse and full polynomials of high degree up to 1,000,000. This
parallel implementation finds roots quite rapidly.

• An original proof of the convergence of the asynchronous imple-
mentation for the EA method.

The article is organized as follows. Initially, we recall the
Ehrlich–Aberth method in Section 2. Improvements for the
Ehrlich–Aberth method are proposed in Section 3. Our conver-
gence proof of the EA asynchronous method is presented in
Section 4. Research works related to the implementation of simul-
taneous methods using a parallel approach are presented in
Section 5. In Section 6, we propose a parallel implementation of
the Ehrlich–Aberth method on GPU and we discuss it. Section 7
presents and investigates our implementation and experimental
study results. Section 8 presents a data analysis collected in the
experiments. Finally, Section 9 concludes this article and gives
some hints for future research directions in this topic.

2. The Ehrlich–Aberth method

It is a cubically convergent iterative method to find zeros of
polynomials as proposed by Aberth [15] whose iterative function
is:

EA2: zk+1
i

= zk
i −

p(zk
i

)

p′(zk
i

)

1 − p(zk
i

)

p′(zk
i

)

∑j=n
j=1,j /= i

1
(zk

i
−zk

j
)

, i = 1,, n (5)

It can be noticed that this equation is equivalent to Eq. (4), but
we prefer the latter one, because we can use it to improve the
Ehrlich–Aberth method and find the roots of high degree polyno-
mials. More details are given in Section 3.

As for any iterative method, a convergence criterion must be
checked after each iteration to decide whether to perform another
step or to terminate the computations. When the termination hap-
pens, it means that the roots are sufficiently stable, i.e., very close
to the actual zeros. In the following, we consider that the method
converges sufficiently when:

∀i ∈ [1, n];

∣∣∣∣
zk

i
− zk−1

i

zk
i

∣∣∣∣ < � (6)

where |. | stands for the absolute value and � is the error threshold.
The definition of a polynomial p(z) is done by setting each of the n
complex coefficients ai. According to the sparse or full setting, some
or all of the coefficients are set deterministically and not randomly
so as to have reproducible and comparable results. More details are
given in Section 7.

Finally, as for any iterative method, we need to choose n
initial guess points z0

i
, i = 1, . . ., n. The initial guess is very impor-

tant since the number of steps needed by the iterative method
to reach a given approximation strongly depends on it. In [15]
the Ehrlich–Aberth iteration is started by selecting n equi-spaced
points on a circle of center 0 and radius �, where � is an upper
bound to the moduli of the zeros. Later, Bini [22] improved this
choice by selecting complex numbers along different circles which

Download	English	Version:

https://daneshyari.com/en/article/4951049

Download	Persian	Version:

https://daneshyari.com/article/4951049

Daneshyari.com

https://daneshyari.com/en/article/4951049
https://daneshyari.com/article/4951049
https://daneshyari.com/

