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a  b  s  t  r  a  c  t

Polynomials  are  mathematical  algebraic  structures  that  play a  great  role  in  science  and  engineering.
Finding  the  roots  of high  degree  polynomials  is computationally  demanding.  In  this  paper,  we present
the  results  of  a parallel  implementation  of  the  Ehrlich–Aberth  algorithm  for  the root  finding  problem
for  high  degree  polynomials  on  GPUs  using  CUDA  and  on multi-core  processors  using OpenMP.  The
main  result  we  achieved  is  to solve  high  degree  polynomials  (up  to 1,000,000)  efficiently.  We  also
compare  the  Ehrlich–Aberth  method  and  the Durand–Kerner  one  on both  full  and  sparse  polynomials.
Accordingly,  our  second  result  is  that the  first method  is  much  faster  and  more  efficient.  Last,  but  not
least,  an  original  proof  of  the convergence  of  the  asynchronous  implementation  for  the  EA  method  is
produced.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. The problem of finding the roots of a polynomial

Polynomials are mathematical algebraic structures used in sci-
ence and engineering to capture physical phenomena and to
express any outcome in the form of a function of some unknown
variables. Formally speaking, a polynomial p(x) of degree n having
n coefficients in the complex plane C  is:

p(x) =
n∑

i=0

aix
i, a0 /= 0. (1)

The root finding problem consists in finding all the n values of
the variable x for which p(x) is nullified. Such values are called zeros
of p. If zeros are ˛i, i = 1, . . .,  n, the p(x) can be written as:

p(x) = an

n∏
i=1

(x − ˛i), an /= 0. (2)

The problem of finding a root is equivalent to that of
solving a fixed-point problem. To observe this, consider the
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fixed-point problem of finding the n-dimensional vector X such
that:

X = g(X)

where g : C
n −→ C

n. We  can easily rewrite this fixed-point problem
as a root-finding problem by setting f(X) = X − g(X) and likewise we
can recast the root-finding problem into a fixed-point problem by
setting:

g(X) = f (X) − X.

It is often impossible to solve such nonlinear equation root-
finding problems analytically. When this occurs, we  turn to
numerical methods to approximate the solution. Generally speak-
ing, algorithms for solving problems can be divided into two  main
groups: direct methods and iterative methods.

Direct methods only exist for n ≤ 4, solved in closed form
by Cardano [1] in the mid-16th century. However, Abel [2] in
the early 19th century proved that polynomials of degree five
or more could not, in general, be solved by direct methods.
Since then, mathematicians have focused on numerical (iterative)
methods such as the famous Newton [3], and the Graeffe one
[4].

Later on, with the advent of electronic computers, other meth-
ods have been developed such as Jenkins–Traub [5], Larkin [6],
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Muller [7], and several others for the simultaneous approximation
of all the roots, starting with the Durand–Kerner (DK) method [8,9]:

DK: zk+1
i

= zk
i − p(zk

i
)∏

i /=  j(z
k
i

− zk
j
)
,  i = 1, . . .,  n, (3)

where zk
i

is the ith root of the polynomial p at the iteration
k.

This formula was mentioned for the first time by Weiestrass [10]
as part of the fundamental theorem of Algebra and was  rediscov-
ered by Ilieff [11], Docev [12], Durand [8], and Kerner [9]. Another
method, discovered by Borsch-Supan [13], and also described and
brought in the following form by Ehrlich [14] and Aberth [15], uses
a different iteration formula given as:

EA: zk+1
i

= zk
i − 1

p′(zk
i

)

p(zk
i

)
−

∑
i /=  j

1
(zk

i
−zk

j
)

, i = 1, . . .,  n, (4)

where p′(z) is the polynomial derivative of p evaluated in the point
z.

Aberth, Ehrlich, and Farmer–Loizou [16] have proven that the
Ehrlich–Aberth method (EA) has a cubic order of convergence for
simple roots whereas the Durand–Kerner has a quadratic order of
convergence. Moreover, the convergence time of iterative methods
drastically increases like the degrees of high polynomials, while it
is expected that the parallelization of these algorithms will reduce
the execution times.

Many authors have dealt with the parallelization of simulta-
neous methods, i.e.,  that find all the zeros simultaneously. Freeman
[17] implemented and compared DK, EA, and another method of the
fourth order proposed by Farmer and Loizou [16], on an 8-processor
linear chain, for polynomials of degree 8. The third method often
diverges, but the first two methods have a speed-up factor equal
to 5.5. Later, Freeman and Brankin [18] considered asynchronous
algorithms, in which each processor continues to update its approx-
imations even though the latest values of other roots have not yet
been received from the other processors. In contrast, synchronous
algorithms wait for the computation of all roots at a given itera-
tions before making a new one. Couturier et al. [19] proposed two
methods of parallelization for a shared memory architecture and
for a distributed memory one. They were able to compute the roots
of sparse polynomials of degree 10,000 in 430 seconds with only
8 personal computers and 2 communications per iteration. Com-
pared to sequential implementations where it takes up to 3300 s
to obtain the same results, the authors’ work experiment shows an
interesting speedup.

To our knowledge, no other work has been published regarding
the parallelization of this method or other ones before the emer-
gence of the Compute Unified Device Architecture (CUDA) [20], a
parallel computing platform and a programming model invented by
NVIDIA. The computing power of GPUs (Graphics Processing Units)
has exceeded that of CPUs. However, CUDA adopts a totally new
computing architecture to use the hardware resources provided by
a GPU in order to offer a stronger computing ability to the massive
data computing. First, Ghidouche et al. [21] proposed an imple-
mentation of the Durand–Kerner method for sparse polynomials
on GPU. Their main result shows that a parallel CUDA implementa-
tion is much faster than the sequential implementation on a single
CPU.

In this paper, we report on our ongoing research aiming at
proposing, implementing, and improving the EA iterative function
and the implementation of the Ehrlich–Aberth method to solve
high degree polynomials accurately and rapidly on GPUs. The main
contributions of this research work are:

• An adaptation of the exponential logarithm to improve the clas-
sical Ehrlich–Aberth iterative method, in order to be able to solve
sparse and full polynomials of high degree.

• A parallel implementation of Ehrlich–Aberth method on GPU for
sparse and full polynomials of high degree up to 1,000,000. This
parallel implementation finds roots quite rapidly.

• An original proof of the convergence of the asynchronous imple-
mentation for the EA method.

The article is organized as follows. Initially, we recall the
Ehrlich–Aberth method in Section 2. Improvements for the
Ehrlich–Aberth method are proposed in Section 3. Our conver-
gence proof of the EA asynchronous method is presented in
Section 4. Research works related to the implementation of simul-
taneous methods using a parallel approach are presented in
Section 5. In Section 6, we  propose a parallel implementation of
the Ehrlich–Aberth method on GPU and we discuss it. Section 7
presents and investigates our implementation and experimental
study results. Section 8 presents a data analysis collected in the
experiments. Finally, Section 9 concludes this article and gives
some hints for future research directions in this topic.

2. The Ehrlich–Aberth method

It is a cubically convergent iterative method to find zeros of
polynomials as proposed by Aberth [15] whose iterative function
is:

EA2: zk+1
i

= zk
i −

p(zk
i

)

p′(zk
i

)

1 − p(zk
i

)

p′(zk
i

)

∑j=n
j=1,j /=  i

1
(zk

i
−zk

j
)

, i = 1, . . .., n (5)

It can be noticed that this equation is equivalent to Eq. (4), but
we prefer the latter one, because we can use it to improve the
Ehrlich–Aberth method and find the roots of high degree polyno-
mials. More details are given in Section 3.

As for any iterative method, a convergence criterion must be
checked after each iteration to decide whether to perform another
step or to terminate the computations. When the termination hap-
pens, it means that the roots are sufficiently stable, i.e.,  very close
to the actual zeros. In the following, we  consider that the method
converges sufficiently when:

∀i ∈ [1,  n];

∣∣∣∣
zk

i
− zk−1

i

zk
i

∣∣∣∣ < � (6)

where |. | stands for the absolute value and � is the error threshold.
The definition of a polynomial p(z) is done by setting each of the n
complex coefficients ai. According to the sparse or full setting, some
or all of the coefficients are set deterministically and not randomly
so as to have reproducible and comparable results. More details are
given in Section 7.

Finally, as for any iterative method, we  need to choose n
initial guess points z0

i
, i = 1, . . .,  n. The initial guess is very impor-

tant since the number of steps needed by the iterative method
to reach a given approximation strongly depends on it. In [15]
the Ehrlich–Aberth iteration is started by selecting n equi-spaced
points on a circle of center 0 and radius �, where � is an upper
bound to the moduli of the zeros. Later, Bini [22] improved this
choice by selecting complex numbers along different circles which
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