
Journal of Computational Science 18 (2017) 106–116

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Porting HPC applications to the cloud: A multi-frontal solver case
study

Bartosz Balis ∗, Kamil Figiela, Konrad Jopek, Maciej Malawski, Maciej Pawlik
AGH University of Science and Technology, Department of Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland

a r t i c l e i n f o

Article history:
Received 16 March 2016
Received in revised form
19 September 2016
Accepted 21 September 2016
Available online 26 September 2016

Keywords:
HPC in the cloud
Multi-frontal direct solver
Scientific workflows
Mesh-based solver

a b s t r a c t

In this paper we argue that scientific applications traditionally considered as representing typical HPC
workloads can be successfully and efficiently ported to a cloud infrastructure. We propose a port-
ing methodology that enables parallelization of communication – and memory-intensive applications
while achieving a good communication to computation ratio and a satisfactory performance in a cloud
infrastructure. This methodology comprises several aspects: (1) task agglomeration heuristic enabling
increasing granularity of tasks while ensuring they will fit in memory; (2) task scheduling heuristic
increasing data locality; and (3) two-level storage architecture enabling in-memory storage of interme-
diate data. We implement this methodology in a scientific workflow system and use it to parallelize
a multi-frontal solver for finite-element meshes, deploy it in a cloud, and execute it as a workflow.
The results obtained from the experiments confirm that the proposed porting methodology leads to
a significant reduction of communication costs and achievement of a satisfactory performance. We
believe that these results constitute a valuable step toward a wider adoption of cloud infrastructures
for computational science applications.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Communication overhead in the infrastructure-as-a-service
(IaaS) clouds is arguably the primary performance bottleneck for
High Performance Computing (HPC) applications [1] which are typ-
ically communication-sensitive. For this reason, clouds have been
mostly used for more loosely-coupled high-throughput computa-
tions [2], including parameter studies and scientific workflows [3].
However, even though HPC clusters outperform clouds in terms
of raw performance, clouds can still produce better turnaround
times, even when considering typical HPC applications, because
of their elastic on-demand resource provisioning model, eliminat-
ing long wait times in the job queues, common in HPC systems
[4]. The advantage of clouds for HPC also comes from a good
price/performance ratio which motivates large industry enter-
prises to move their HPC workloads to the cloud in order to reduce
costs related to maintaining an on-premises HPC infrastructure [4].

In this paper, we study an important class of problems, tradi-
tionally considered as HPC applications, that can be solved using
the finite element method and multi-frontal solvers. We focus
on a large class of non-symmetric elliptic or Maxwell problems

∗ Corresponding author.
E-mail address: balis@agh.edu.pl (B. Balis).

that can be solved on two dimensional adaptive meshes with
uniform polynomial order of approximation. We follow the defi-
nition of hierarchical basis functions from the book of Demkowicz
[5]. However, we restrict our class of meshes to uniform sec-
ond order polynomials, which is the most common use choice for
FEM computations. We utilize H-adaptive finite element method
with constrained approximation and hanging nodes technique, as
described in [5]. The particular implementation of the multi-frontal
solver presented in our paper is described in Ref. [6], chapter 8.

The multi-frontal solver algorithm introduced by Duff and Reid
[7,8] is the state of the art solver for mesh-based computations.
The solver algorithm can be decomposed into a graph of tasks.
This has been already done for one or two-dimensional finite dif-
ference method [9], as well as for two-dimensional [10,11] and
three-dimensional [12] adaptive finite element method. Exist-
ing multi-frontal solvers have been designed for and executed
exclusively on HPC clusters, shared-memory machines, or GPUs,
utilizing MPI for interprocess communication [13–15], multi-
threading [16,17], CUDA [18], or a hybrid of those [19].

We propose a methodology allowing efficient porting of such
applications to cloud infrastructures. This methodology consists in
representing the computational problem as a scientific workflow
and applying several design-time and execution-time optimiza-
tions, such as efficient task agglomeration and mapping, that lead
to significant reduction of the communication to computation ratio

http://dx.doi.org/10.1016/j.jocs.2016.09.006
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.09.006
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2016.09.006&domain=pdf
mailto:balis@agh.edu.pl
dx.doi.org/10.1016/j.jocs.2016.09.006

B. Balis et al. / Journal of Computational Science 18 (2017) 106–116 107

and achievement of a good performance and speedup in the cloud
infrastructure. To evaluate the proposed methodology, we per-
form experiments using a system for execution of multi-frontal
solver workflows in the cloud, implemented on the basis of the
solver described in [20] and our workflow runtime environment
HyperFlow [21]. Our target environment is the infrastructure-
as-a-service (IaaS) cloud, which allows for dynamic on-demand
creation of computing nodes in the form of virtual machines (called
instances), but our approach can also be used on other infrastruc-
tures, such as traditional commodity clusters.

Scientific workflows are successfully used for automation of
computational problems in a variety of scientific disciplines [3].
Using workflows lets the user focus on describing a computational
problem as an abstract graph of tasks, while the workflow manage-
ment system transparently takes care of its execution that includes,
amongst others, provisioning of the required computing resources,
task scheduling, deployment of application components, and data
staging. A workflow defined once enables transparent utilization
of diverse Distributed Computing Infrastructures (DCIs), such as
clusters, grids or clouds. Workflows have been typically used for
loosely-coupled computations, where each task is executed as an
independent program (executable) with input and output data
transferred as files. In this work, our intent is to investigate the
usage of the workflow model and a workflow system to more
tightly-coupled application.

This paper is a substantial extension of our earlier conference
publication [22] where preliminary ideas for the approach were
presented and evaluated on a small scale. The main contributions
of this paper are:

• We discuss the parallelization of the multifrontal solver as a
workflow using the partitioning, communication, agglomeration
and mapping (PCAM) methodology [23].

• We propose new optimizations of task agglomeration based on
estimated memory consumption, and a mapping that improves
data locality in order to minimize the communication between
tasks considerably.

• We develop new execution services and data exchange mecha-
nisms for the HyperFlow workflow system to take advantage of
the optimized parallel execution.

• We evaluate our solution on large-scale workflows with
hundreds of thousands of tasks that can be agglomerated to less
than a thousand tasks using our method. The tests on up to 64
VMs on Amazon EC2 show the speedup of over 39 times.

The paper is organized as follows. Section 2 describes related
work. Section 3 presents the porting methodology. In Section 4,
the implementation of the environment for development and
execution of solver workflows is described. Section 5 contains
experimental evaluation of the proposed methodology. Section 6
discusses the evaluation results. Section 7 concludes the paper and
outlines directions for future research.

2. Related work

2.1. Multi-frontal solvers

The classical multi-frontal solvers work based on the ordering
obtained from some heuristic algorithm, like e.g. nested-
dissections [24] working on the sparsity graph of the global matrix.
The ordering is transformed internally into the element partition
tree inside the solver. It has been shown recently [20] that it is pos-
sible to construct multi-frontal direct solver based on the element
partition tree, that defines recursive partitions of the computational
mesh [25–27].

For some class of grids the orderings following from the element
partition trees outperforms the ordering obtained based on the
analysis of the sparsity of the global matrix. An alternative approach
is to consider the adjacency graph for nodes of finite element mesh
[16,17,28,29]. Based on the mesh, the frontal (elimination) tree
is generated which prescribes the order of elimination of mesh
nodes. This approach was used in [28]. In our approach, we generate
our ordering based on the element partition tree, prescribing the
recursive partitions of the mesh. The element partition tree is some-
times confused with the elimination tree, however the first one is
obtained from the mesh, and the second one implies from the order-
ing and the sparse matrix. For adaptive mesh based computations,
namely for grids with point and edge singularities, it is possible to
construct element partition trees with lightweight computational
tasks close to the root of the element partition tree [25,27]. This
concerns computational meshes in both two and three dimensions.

A similar representation of the multifrontal solver computation
as a tree has been used for efficient parallelization [30]. The key to
achieving efficiency was the scheduling of tasks based on memory
and work estimation to achieve a good load-balancing. In our work
we also use the memory estimation for the optimal load-balancing
of workflow tasks.

2.2. HPC in the cloud

Cloud infrastructures have not been widely adopted for HPC
workloads yet, but there are initiatives to bridge this gap. Here we
report on some most notable examples.

Early studies regarding HPC in the cloud were conducted in
the scope of Magellan project [31]. The final report concluded
that although loosely-coupled applications tend to perform well
on clouds, the dedicated HPC systems are needed for typical
communication-intensive and tightly coupled workloads.

Scientific workflows have been also evaluated in the cloud, in
terms of cost and performance, e.g. in [32,33]. These classes of appli-
cations executed by Pegasus workflow management system are
large-scale, but they typically consist of loosely-coupled tasks that
communicate via file transfers, which is not applicable to the prob-
lem we are addressing in this paper. Similar reasoning also applies
to large-scale many-task computing applications, which have been
studied in clouds [34].

A comparative study of Amazon EC2 cluster to typical HPC clus-
ters presented in [4] focused on turnaround time and total cost of
execution. The turnaround time includes the time of a job waiting
in a queue of a HPC system or VM acquisition time. As such, the
turnaround time is a clear advantage of cloud services over typical
HPC systems. In terms of cost, the results depend on the application
and workload type, and the cost model of HPC system in question.

The initiative of UberCloud promotes the usage of cloud systems
for technical and scientific computing. The experimental results
[35,36] have shown that the performance of HPC in the cloud is
sufficient for the application of a large finite element analysis, and
that run time can be optimized by properly selecting a configuration
of CPU, memory, and interconnect.

Gupta et al. [1] studied the performance behavior of several
HPC applications in the cloud. However, they do not consider
improvements to the applications’ parallelization scheme toward
reducing the performance bottlenecks of the cloud. They address
the problem of heterogeneity of the cloud resources by dynamic
load-balancing of application tasks among virtual machines [37]
or by scheduling VMs on physical resources to optimize perfor-
mance of HPC applications [38]. This is different from our approach,
where we propose a parallelization method to significantly reduce
the communication costs. We also do not assume the control over
the physical infrastructure, but rather we focus on public clouds
such as Amazon EC2.

Download	English	Version:

https://daneshyari.com/en/article/4951055

Download	Persian	Version:

https://daneshyari.com/article/4951055

Daneshyari.com

https://daneshyari.com/en/article/4951055
https://daneshyari.com/article/4951055
https://daneshyari.com/

