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a  b  s  t  r  a  c  t

We  present  an  axisymmetric  lattice  Boltzmann  model  based  on the  Kupershtokh  et al. multiphase  model
that  is capable  of solving  liquid–gas  density  ratios  up  to  103.  Appropriate  source  terms  are  added  to
the  lattice  Boltzmann  evolution  equation  to fully  recover  the axisymmetric  multiphase  conservation
equations.  We  validate  the  model  by  showing  that  a stationary  droplet  obeys  the  Young–Laplace  law,
comparing  the  second  oscillation  mode  of  a droplet  with  respect  to  an  analytical  solution  and  showing
correct  mass  conservation  of a propagating  density  wave.
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1. Introduction

The lattice Boltzmann method (LBM) [1,2] is an efficient numer-
ical tool to solve the Navier–Stokes equations. This numerical
method can be systematically derived from the Boltzmann equa-
tions by means of a Hermite expansion approach [3]. In many
physically realistic flow problems one has to deal with multiphase
flows such as the contact angle hysteresis of a moving droplet on
a surface, a capillary rise in a cylindrical tube and droplet impact
on solid surfaces. To this end, several extensions have been pro-
posed to support multiphase flows in the LBM. In an early attempt,
Gunstensen et al. [4] studied a two-component fluid lattice-gas
method. Shan et al. [5,6] were the first to incorporate intermolec-
ular interactions to achieve phase separation in LBM. A different
approach to model a multiphase fluid was developed by Swift et al.
[7], who associated a free energy functional to the fluid. In their
original form, these models lack the ability to achieve high den-
sity ratios across fluid interfaces and suffer from spurious currents
near the liquid–vapor interface. In many engineering applications
density ratios range from 101to103, posing a serious limitation to
the applicability of these lattice Boltzmann models in their origi-
nal form. Recently, Lee et al. [8] showed that the spurious currents
are caused by discretization errors in the computation of the mul-
tiphase force. These spurious currents can be reduced to machine
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precision by employing a potential form of the non-ideal pressure
and a isotropic central difference approximation scheme for the
multiphase force. Kupershtokh et al. [9] showed that it is possi-
ble to achieve density ratios of 106 when the multiphase force is
discretized by just a single-neighbour discretization scheme. The
ability to achieve high density ratios makes this model applicable
to many engineering applications. However, in this scheme the sur-
face tension cannot be varied independently and spurious currents
still exist.

Recently the LBM was  extended to support axisymmetric mul-
tiphase flows. These axisymmetric simulations are effectively 2D
simulations in a cylindrical coordinate system. Therefore, the com-
putational cost for axisymmetric 3D flow problems is significantly
lower in comparison to the same problem in a full 3D simulation.
Halliday et al. [10] was  the first to implement an axisymmetric
LBM for single-phase flows. They introduced additional source and
sink terms to the evolution equation and showed that they recover
the 2D axisymmetric Navier–Stokes equations. This model was
improved by Lee et al. [11] who corrected a missing source term
related to the radial velocity. In addition, the method of Halliday
et al. was  extended to support non-ideal flows. Premnath et al.
[12] were the first to implement an axisymmetric multiphase LBM.
Their model is able to achieve density ratios up to 10 and was  fur-
ther improved by Mukherjee et al. [13] to support density ratios
up to 103 and perform stable computations at lower viscosities.
In this improved model, they use a pressure-evolution based LBM
combined with a multiple-relaxation-time (MRT) collision model.
Another axisymmetric multiphase LBM model by Srivastava et al.
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[14] is based upon the widely used Shan–Chen model. In this model,
they add an extra contribution to the Shan–Chen multiphase force
to fully recover three-dimensionality in the system. However, large
density ratios (>30) could not be achieved due to the limits of the
original Shan–Chen model.

In this paper, we introduce a novel and easy-to-implement
axisymmetric isothermal multiphase model for high density ratio
fluids. The proposed model is based on the axisymmetric LBM
of Srivastava et al. [14] combined with the multiphase model of
Kupershtokh et al. [9]. The combined model inherits all advantages
and disadvantages of the existing multiphase model by Kupersh-
tokh et al., which we will not discuss in detail here. An extensive
study to the accuracy and stability of the Kupershtokh et al.
multiphase method can be found in [15]. Our implementation is dis-
cussed in Section 2. In Section 3 we present three validation tests.
First, we verify that a stationary droplet obeys the Young–Laplace
law. Then, we compare the second oscillation mode of an oscil-
lating droplet with an incompressible analytical solution. Finally,
we show that the method correctly describes the propagation of a
density wave towards and away from the longitudinal z-axis. Our
main conclusions and limitations of the method are discussed in
Section 4.

2. Model derivation

We  first introduce the standard LBM. In the following sub-
sections, we will gradually show the changes necessary to obtain a
fully functional axisymmetric isothermal multiphase LBM.

2.1. The lattice Boltzmann method

We  use the common D2Q9 LBM, based on a two-dimensional
Eulerian lattice with nine velocities. For the time evolution of the
distribution function fi, we use the BGK approximation with a single
relaxation parameter � [2]. The time evolution is given by

fi(x+eiıt, t + ıt) = fi(x, t) + ıt

�
(f eq
i

(x, t) − fi(x, t)) + ıtSi(x, t), (1)

where x is the position, t is the time, ıt is the time step, � is the
relaxation time, Si(x, t) is a source term, f eq

i
is the local equilibrium

distribution and ei is a discrete velocity set given by

ei =

⎧⎨
⎩

(0,  0) i = 0,

(1, 0)FS i = (1,  2, 3, 4),

(±1, ±1) i = (5,  6, 7, 8),

where the subscript FS denotes a fully symmetric set of points. The
local equilibrium distribution function f eq

i
is a second-order Taylor

expansion of the Maxwell–Boltzmann distribution [2] and is given
by

f eq
i

(x, t) = wi�(x, t)

[
1 + 1

c2
s

(ei · u(x, t)) + 1

2c2
s

×
(

1

c2
s

(ei · u(x, t))2 − ||u(x, t)||2
)]

, (2)

where c2
s = 1/3 is the lattice speed of sound in this single-phase

model and wi are the quadrature weights given by

wi =

⎧⎨
⎩

4/9 i = 0,

1/9 i = (1,  2, 3, 4),

1/36 i = (5,  6, 7, 8).

The hydrodynamic quantities of the fluid, such as density � and
velocity u are calculated as weighted sums of the distribution func-
tion fi

�(x, t) =
∑
i

fi(x, t), (3)

u(x, t) = ıtF(x, t)
2�(x, t)

+
∑
i

eifi(x, t)
�(x, t)

, (4)

where u(x, t) is shifted by means of an internal/external force F. In
the past, different implementations of a body force, F, were pro-
posed [16]. Here we use the forcing scheme by Guo et al. [17]

Si(x, t) = wi

(
1 − ıt

2�

)
(
(ei − u) · F

c2
s

+ (ei · u)(ei · F)

c4
s

). (5)

2.2. The extension to an axisymmetric method

In an axisymmetric flow (Fig. 1), there is no flow in the azimuthal
direction (u� = 0) and mass conservation reads

∂�
∂t

+ ∇c · (�u) = −�ur
r

(6)

where ∇ c ≡ (∂/∂z, ∂/∂r) is the gradient operator in a two-
dimensional Cartesian coordinate system (x → z, y → r) and u = (uz,
ur) is the fluid velocity. The momentum equation reads

�

(
∂u

∂t
+ u · ∇cu

)
= −∇cP + �∇c · [∇cu + ∇cuT] + C (7)

where P is the fluid pressure which in a single-phase LBM is given
by P = c2

s � and C is given by

Cz = �

r

(
∂uz
∂r

+ ∂ur
∂z

)
, Cr = 2�

∂
∂r

(
ur
r

)
, (8)

with � the fluid viscosity. It is clear that Eqs. (6) and (7) have
additional contributions to the mass and momentum conservation
equations in comparison to 2D flow in the (z, r)-plane. These con-
tributions ensure local conservation of mass and momentum when
fluid is moving towards or away from the longitudinal z-axis. The
single-phase LBM can be supplemented with appropriate source-
terms to recover the axisymmetric conservation Eqs. (6) and (7)
[14]. To this end, the evolution Eq. (1) is rewritten with an additional
source term hi

fi(x + eiıt, t + ıt)  = ıt

�
(f eq
i

(x, t) − fi(x, t)) + fi(x, t) + ıtSi(x, t)

+ ıthi

(
x + ei

ıt

2
, t + ıt

2

)
. (9)

where hi is evaluated at fractional time steps. Srivastava et al. [14]
showed by means of a Chapman–Enskog (CE) expansion that when
hi has the following form

hi = wi

(
−�ur
r

+ 1

c2
s

(eizHz + eirHr)

)
, (10)

with ei = (eiz, eir) and

Hz = eiz
r

(
�

(
∂uz
∂r

+ ∂ur
∂z

)
− �uruz

)
, (11a)

Hr = eir
r

(
2�

(
∂ur
∂r

+ ur
r

)
− �u2

r

)
, (11b)

the resulting LBM solves the axisymmetric conservation equations
given by (6) and (7) in the limit of small Mach number. The velocity
derivatives inside (11) are approximated by a isotropic fifth-order
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