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a  b  s  t  r  a  c  t

We  present  recent  developments  in  lattice  Boltzmann  modeling  for multi-component  flows,  imple-
mented  on  the  platform  of  a  general  purpose,  arbitrary  geometry  solver  PowerFLOW.  Presented
benchmark  cases  demonstrate  the  method’s  accuracy  and robustness  necessary  for  handling  real  world
engineering  applications  at practical  resolution  and  computational  cost.  The  key  requirements  for  such
approach  are  that  the relevant  physical  properties  and flow  characteristics  do  not  strongly  depend  on
numerics.  In  particular,  the strength  of surface  tension  obtained  using  our new approach  is indepen-
dent  of  viscosity  and  resolution,  while  the  spurious  currents  are  significantly  suppressed.  Using  a much
improved  surface  wetting  model,  undesirable  numerical  artifacts  including  thin  film  and  artificial  droplet
movement  on inclined  wall  are significantly  reduced.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Recently, there has been increased interest in engineering
applications of multi-component flow simulation with the lattice
Boltzmann (LB) method, because of its advantages for complex
geometry and turnaround time efficiency. The lattice Boltzmann
method (LBM) is based on the kinetic theory which allows to
construct physical models from microscopic as well as from macro-
scopic viewpoints.

While multi-component LBM’s have shown promising results on
a large number of academic cases, numerical accuracy and stability
still represent challenges under extreme conditions such as coarse
resolution and low viscosity. Actually, these conditions are likely
to be encountered in many engineering applications. In this paper,
issues with currently existing schemes and models are pointed out,
and an improved LB scheme is tested.

The paper is organized as follows. In Section 2, the standard
LBM for multi-component flow is briefly reviewed. In Section 3,
issues related to the basic functionality are specified, and an
improved scheme is proposed and tested via the simulation of a
two-dimensional droplet. In Section 4, cases with wall boundaries
are discussed and typical issues associated with boundary models
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are pointed out. A new boundary model is tested on some bench-
mark cases. We discuss results in Section 6. In this paper, all physical
quantities are written in lattice units, and the discrete lattice time
and space increments are �x  = �t  = 1.

2. Multi-component lattice Bolzmann method

The commonly used LB equation for multi-component flow can
be written as:

f ˛
i (x + ci�t,  t + �t) − f ˛

i (x, t) = C˛
i + F˛

i , (1)

where  ̨ stands for different components (species), ci is the discrete
velocity and F˛

i is inter-component interaction force [1]. The D3Q19
lattice model [2] is used so that i ranges from 1 to 19, and C˛

i is the
particle collision operator. The simplest and commonly used one is
the BGK collision operator [2–5] with a single relaxation time �˛

for the ˛-species:
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as:
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Here T0 = 1/3 is the lattice temperature, wi is the isotropic weight in
D3Q19, �˛ is the density of the component ˛, and u is the mixture
flow velocity:
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∑
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�
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There exist several models that introduce local interactions
between components that are responsible for separation between
the components [1,6]. One of the most commonly used ones is the
Shan-Chen potential force:

F˛,ˇ(x) = G˛,ˇ�˛(x)
∑

i

wici�
ˇ(x + ci�t). (7)

Here, the matrix G˛,ˇ defines parameters which determine the
strength of interaction between components. If G˛,˛ = 0 and
G˛,ˇ /= 0 where  ̨ /= ˇ, the interaction forces only exist between
different components. The equation of state for each component is
that of ideal gas. If G˛,˛ is nonzero, in addition to the interaction
forces between different components, there is also a body force
within the ˛-component. As a result, the ˛-component acquires
the equation of state of a non-ideal gas and phase transition within
that component becomes possible. In this paper, phase transitions
of single components are neglected and G˛,˛ = 0.

There are several ways to apply the forcing term F˛
i . The exist-

ing approaches have the same body force representation at the
first order in space/time resolution, but different at the second and
higher orders. The high order difference does have significant influ-
ence on simulation quality. In this work we use the forcing term
described in [7].

The resulting fluid velocity uF is the velocity averaged over pre-
and post-collision steps,

uF = u + g�t

2
(8)

g =
∑

˛g˛�˛

�
. (9)

where g˛ is the acceleration of the component  ̨ derived from
the intercomponent force F˛,ˇ: g˛ =

∑
ˇF˛,ˇ/�˛. This quantity uF

is henceforth called simply velocity.

3. High accuracy bulk solver

Engineering applications usually require simulations involving
various material properties and flow scenarios. Due to the jump
of physical characteristics at the interface between components,
accurate representation and simulation of these interfaces repre-
sents a significant difficulty. There is a consensus that numerical
stability and accuracy remain two major challenges in develop-
ment of multi-phase/multi-component LB flow solvers. To ensure
numerical stability, the viscosities cannot be too small, and also the
viscosity ratio between different components cannot be too large.
Numerical artifacts including spurious current could often contam-
inate flow physics near the interface region. It becomes even more
challenging when the solid-fluid interaction, i.e. surface wetting, is
also considered. A new LB algorithm for the multi-component flow
used in this work improves these numerical issues.

Even when the interface is static, numerical artifacts could
provide a source of artificial velocity, which is called spurious veloc-
ity (cf. [8]). The proper treatment of these phenomena is recognized

as one of the key requirements for accuracy and stability of the
multi-component flow modeling. In previous studies [9,10], it is
pointed out that the spurious current is associated with the insuffi-
cient isotropy of the numerical system caused by the discretization.

Instead of BGK, we  use here a regularized filter collision operator
[11]:

f ˛
i (x + ci�t,  t + �t) = f eq,˛
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Here �˛ is the relaxation time of the fluid component  ̨ that is
related to the kinematic viscosity of that component �˛ [12]. f neq,˛

i
is the regularized non-equilibrium distribution function,

f neq,˛
i

= �˛ : �˛, (11)

where � is a regularized filter collision operator based on Hermite
polynomials [11,13,14] and �˛ is the non-equilibrium momentum
flux tensor for the component ˛. F˛

i is the interaction body force.
The general idea and relevant algorithm details of the regulariza-
tion can be found in [11,13–16]. Here we would like to emphasize
that this filter collision operator keeps the nonequilibrium informa-
tion of moments up to the desired order, for example the 2nd order
for the momentum flux and the 3rd order for the energy flux, and
removes other higher order nonequilibrium moments in the Her-
mite space. Such a filtering procedure could substantially reduce
unphysical noise and numerical artifacts and improve numerical
stability and accuracy.

As a first test of this approach, a two-dimensional static droplet
is simulated with the variable initial droplet radius, R = {8, 12, 16,
24}, and relaxation time, �˛ = {0.525, 0.55, 1.0, 1.5, 3.0} for each
component. The simulation domain size is five times the droplet
radius and the initial density for each component is 0.22. After a
steady state is reached, the droplet radius is measured by fitting the
hyperbolic tangent curve to the density profile so that the interface
position is accurately estimated.

In Fig. 1, the pressure differences across the droplet interface, dP,
are plotted with respect to the inverse droplet radius 1/R, using four
sets of �˛ combinations with the maximum viscosity ratio of 100.
The subscripts 1 and 2 for � denote quantities inside and outside
the droplet, respectively. Results for all � options are fitted by a line.
According to the Young-Laplace law,

dP = �

R
, (12)

the slope of the fitted line numerically achieves the surface tension
�, which is independent of the viscosity and droplet size. Achieving
such independence is an important first step toward simulating
complex practical problems.

As mentioned above the spurious current problem is believed
to be caused by insufficient isotropy of discrete schemes [9,10]. In
Fig. 2, maximum spurious currents are plotted in terms of �2 and
R. In the left figure, �2 is varied while �1 is fixed corresponding to
the initial R = 8. It is seen that the spurious current of the modified
scheme is lower than the original one for all cases. Furthermore,
with the modified version the spurious current dependence upon
� and R is much reduced. As a result, one can estimate the spurious
velocity quantitatively even before simulation, evaluate its effect
on the main flow, and reduce numerical artifacts.

In Fig. 3, the distributions of the velocity field and the second
component density are presented. Here the initial R is 24 and the
relaxation times are �1 = 0.525 and �2 = 3.0. The results demonstrate
that the new scheme significantly reduces the spurious current
while preserving the density profile and the interface thickness.
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