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a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 1 December 2015
Received in revised form 23 March 2016
Accepted 26 March 2016
Available online xxx

Keywords:
Lattice Boltzmann
Half-range Gauss–Hermite quadratures
Poiseuille flow
Rarefied gases
Microfluidics

a  b  s  t  r  a  c  t

We  consider  the  2D  force-driven  Poiseuille  flow  between  parallel  plates,  on  which  diffuse  reflection
boundary  conditions  apply.  We  present  a systematic  procedure  for the  construction  of  the  force  term  in
lattice  Boltzmann  models  based  on  mixed  Cartesian  quadratures,  where  the quadrature  on  each  axis
is  selected  independently.  We  find  that,  at non-negligible  value  of the  Knudsen  number,  half-range
quadratures  outperform  the  full-range  Gauss–Hermite  quadratures  for the  direction  perpendicular  to
the  diffuse-reflecting  plates,  while  the  quadrature  on  the periodic  direction  along  the  flow  is  the  full-
range  Gauss–Hermite  quadrature.  Our results  are validated  against  numerical  results  available  in  the
literature.
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1. Introduction

At non-negligible values of the Knudsen number Kn (defined as
the ratio �/L between the mean free path � of the fluid particles
and the characteristic length scale of the channel L), microflu-
idics effects beyond the reach of the Navier–Stokes continuum
formulation become important. The boundary conditions imposed
on the channel walls must account for the microscopic nature of
the fluid constituents. According to the diffuse reflection concept
[1,2], the particles incident on the wall are fully thermalised due
to particle–wall interactions before being re-emitted back into the
fluid. For a planar boundary, having outwards-directed normal �,
mass conservation is ensured by imposing zero flux at the wall:∫

p · �<0

dDp f (eq)(nw, uw, Tw; p) (p · �) = −
∫

p · �>0

dDp f (p) (p · �),

(1)

where nw , uw and Tw are the particle number density, macroscopic
velocity and temperature of the bounding wall. For prescribed wall
velocity uw and wall temperature Tw , the above equation can be
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sofonea@acad-tim.tm.edu.ro (V. Sofonea).

used to find the number density nw in the wall nodes. Non-planar
walls can be approximated by successions of walls which are per-
pendicular to the coordinate axes [3,4], provided that the lattice is
sufficiently fine.

In this paper, we focus on the study of the 2D force-driven
Poiseuille flow between parallel plates using lattice Boltzmann (LB)
models. Many excellent studies of the Poiseuille flow have been
performed using the lattice Boltzmann method, mostly in isother-
mal  conditions and at low Mach numbers [5–12]. Non-isothermal
flows were considered in [13–18] and it was found, by compari-
son with analytic works [19–22] and with Direct Simulation Monte
Carlo (DSMC) results [6,11,12,16–18] or experimental data [15],
that high-order LB models (i.e. with large velocity sets) must be
employed to access the physics beyond the Navier–Stokes level,
which gives rise to microfluidis specific effects (e.g. slip velocity,
temperature dip, Knudsen paradox, etc). A similar conclusion was
reached through the analysis of the Couette flow [23].

As suggested in Refs. [6,16] for the Poiseuille flow, and also in
Refs. [24–27], the implementation of diffuse reflection in LB mod-
els cannot be performed exactly when full-space quadratures are
employed. Based on the analytic analysis of flows between diffuse
reflective boundaries [28–37], a solution to correctly account for
half-range integrals of the form in Eq. (1) is to consider half-range
polynomial expansions of the distribution function. This idea can
be implemented in LB models by employing quadratures based
on half-range polynomials, such as the Laguerre [38–40] and the
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half-range Hermite [41–43] polynomials, as well as by explicitly
constructing velocity sets and quadrature weights that recover
half-range moments [12].

The novelty of this paper lies in extending the mixed quadra-
ture LB models introduced in Ref. [43] by introducing a force term
on the direction where the full-range Gauss–Hermite quadrature is
employed. Our approach to the simulation of Poiseuille flow follows
closely the one employed in Ref. [43] for the Couette flow, which we
summarise here. Noting that f (eq) can be factorised with respect to
the Cartesian components of the momentum and in order to reduce
computational effort, we follow Refs. [36,37] and consider thermal
LB models based on mixed Cartesian quadratures. On the direction
parallel to the walls (the y axis), we always employ a full-range
Gauss–Hermite quadrature, since the boundary conditions on this
direction are periodic. On the direction perpendicular to the walls
(the x axis), we compare the full-range Gauss–Hermite, Laguerre
and half-range Gauss–Hermite quadratures in terms of conver-
gence. We  work with the BGK collision term, expanding f (eq) with
respect to each axis independently, as described in Refs. [39,40,43].
Thus, when half-range quadratures are considered, the expansion
of f (eq) can be performed such that its half-range moments are
exactly recovered, thereby extending the work in Refs. [12,41,42],
where the expansion of f (eq) does not allow the exact recovery of its
half-range moments. Since the force for this flow is applied only on
the axis parallel to the walls, the method introduced in Ref. [44] is
used to derive an expression for the force term when the full-range
Gauss–Hermite quadrature is employed.

In general, the quadrature points corresponding to Gauss
quadratures are irrational numbers, giving rise to velocity vectors
having irrational components on the coordinate axes. In order to
implement arbitrary quadrature orders, we employ a finite differ-
ence flux-limiter scheme [16,45,27].

This paper is organised as follows. In Section 2, the
Boltzmann–BGK equation is discussed in the context of the 2D
force-driven Poiseuille flow. Mixed quadrature thermal lattice
Boltzmann models are introduced in Section 3 and the general
formula for the force term when full-range Gauss–Hermite quadra-
tures are considered is given in Section 3.3. The numerical method
employed for the Poiseuille flow is described in Section 4 and the
numerical results are presented in Section 5. Appendix A lists some
basic ingredients required for the construction of LB models based
on half-range Hermite quadratures.

In this paper, all physical quantities are non-dimensionalised as
presented in Refs. [46–49].

2. Boltzmann–BGK equation for the 2D Poiseuille flow

The Boltzmann equation in the presence of an external force F
can be written as:

∂tf + 1
m

p · ∇f + F · ∇pf = J[f ], (2)

where m is the particle mass and f ≡ f(x, p, t) is the Boltzmann dis-
tribution function, giving the number of particles per unit phase
space volume centred at position x and momentum p at time t. In
this paper, we consider the Bhatnagar–Gross–Krook (BGK) approx-
imation [50] for the collision term J[f]. Specialising to the case of
the 2D Poiseuille flow between parallel plates driven by a constant
force F = (0, ma) (where a is the acceleration along the y direction)
reduces Eq. (2) to:

∂tf + 1
m
px∂xf + ma∂py f = −1

�
(f − f (eq)), (3)

where the flow is considered to be homogeneous along the periodic
direction y, while diffuse reflection boundary conditions apply on
the x direction. The plates are placed at x =± L/2 and are kept at

rest at the temperature Tw . The relaxation time � is related to the
(constant) Knudsen number Kn through [51]

� = Kn

n
. (4)

In this paper, we  focus on obtaining the profiles of the macro-
scopic density n, fluid velocity u, stress tensor T˛ˇ and heat flux q,
defined as:

n =
∫
d2pf =

∫
d2pf (eq), (5a)

�u˛ =
∫
d2p p˛ f =

∫
d2p p˛ f

(eq), (5b)

T˛ˇ =
∫
d2p

p˛pˇ
m

f, (5c)

q˛ =
∫
d2p

�
2

2m
�˛
m
f, (5d)

where � = mn is the mass density and �˛≡ p˛− mu˛ is the peculiar
momentum.

The temperature is defined in terms of the trace of the stress
tensor:

nT + 1
2
�u2 = 1

2

(
Txx + Tyy

)
=
∫
d2p

p2

2m
f (eq). (6)

The equality between the moments of f and f (eq) in Eqs. (5a), (5b)
and (6) is a statement of the fact that 1, p˛ and p2/2m are collision
invariants of the Boltzmann collision term J[f] (in particular, also of
the BGK collision term).

In order to study the macroscopic evolution equations contained
in the Boltzmann equation, it is convenient to introduce the follow-
ing notations:

Msx,sy =
∫
d2ppsxx p

sy
y f, Meq

sx,sy =
∫
d2p psxx p

sy
y f

(eq). (7)

Thus, the evolution equation for Msx,sy can be written as:

∂tMsx,sy + 1
m
∂xMsx+1,sy = masyMsx,sy−1 − 1

�
(Msx,sy − Meq

sx,sy ), (8)

where integration by parts was used to obtain the coefficient of a.
For the Poiseuille flow considered here, the evolution of a moment
of order sx on the x axis requires information about the moment of
order sx + 1 on the x axis, while the evolution of moments of order
sy on the y axis can be written completely in terms of moments of
order less than or equal to sy on the y axis. This implies that the
evolution of moments of order up to Ny on the y axis can be recov-
ered with a quadrature that exactly recovers moments of order up
to Ny on the y axis. Thus, when investigating the moments in Eqs.
(5), the results of simulations employing quadratures that recover
moments of order up to Ny ≥ 4 yield identical results when Nx is
kept fixed.

3. Lattice Boltzmann models based on mixed Cartesian
quadratures

As discussed in Refs. [28,36,37,43], half-range quadratures are
only appropriate on the directions perpendicular to the bounding
walls. While in Ref. [40], the half-range Gauss–Laguerre quadra-
ture was  employed on all axes to study the 3D Poiseuille flow,
here we  employ full-range Gauss–Hermite quadratures on the y
axis (the axis parallel to the walls). For the x direction, we  consider
the cases of full-range Gauss–Hermite, Gauss–Laguerre and half-
range Gauss–Hermite quadratures, which we discuss separately in
what follows. We  refer to such models for which the quadrature
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