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a b s t r a c t

A hybrid Molecular Dynamics/Fluctuating Hydrodynamics framework based on the analogy with two-
phase hydrodynamics has been extended to dynamically tracking the feature of interest at all-atom
resolution. In the model, the hydrodynamics description is used as an effective boundary condition
to close the molecular dynamics solution without resorting to standard periodic boundary conditions.
The approach is implemented in a popular Molecular Dynamics package GROMACS and results for two
biomolecular systems are reported. A small peptide dialanine and a complete capsid of a virus porcine
circovirus 2 in water are considered and shown to reproduce the structural and dynamic properties
compared to those obtained in theory, purely atomistic simulations, and experiment.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in hydrodynamics theory make it applicable to
problems of space and time scales approaching molecular level.
For example, it has been demonstrated [1,2] that the statistics
of the thermal fluctuations of hydrodynamic fields can be quan-
titatively reproduced at the scale when the elementary volume
contains only a few dozens of atoms. Such results motivated a wide
spectrum of research where classical molecular dynamics is con-
sistently connected to continuum hydrodynamics. These methods
are particularly promising from the technical point of view since
they have a potential of significant savings in computing resources
without substantial loss of accuracy in critical regions. Biomolecu-
lar systems benefit especially strongly here because biomolecules
necessarily have critical regions where atomistic representation is
needed, while the system overall usually functions in close con-
nection to a large medium of water and other molecules. The latter
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is critically important, but impossible to model at atomistic level
because of the sheer size of the system.

In most approaches connecting particle and continuum dynam-
ics either local hydrodynamic properties are computed with the
help of molecular dynamics [3,4]; or hydrodynamic fields serve as
boundary conditions to molecular dynamics part of the system [5].
This ‘mechanistic’ partitioning of the system often creates problems
and even artefacts in cases where there is no clear scale separa-
tion between different parts of the multiscale system in space and
time. A straightforward example is the problem of particles leaving
and entering the molecular dynamics zone. Several computational
tricks are suggested, for example periodic boundary conditions in
the molecular dynamics zone with prescribing a required meanflow
gradient, however, more consistent, physically justified approaches
are needed in the case of a strong coupling between the atomistic
and the fluid dynamics regions.

We have recently suggested and implemented a new approach
to the problem of computing liquids at multiple scales in space and
time based on the two-phase hydrodynamics analogy [6]. Instead of
separating the system into parts using boundaries, we describe the
liquid as a nominally two-phase system consisting of both particle
and continuum at the same time. The contribution of each prop-
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Fig. 1. A schematic representation of the hybrid simulation framework; because of
the shape of the s function (bottom) purely MD particles on the right are gradually
transformed into passive traces that follow the hydrodynamics flows on the left.

erty (particles or continuum), for example their ‘partial volume’,
can vary depending on location and time, such as in the limiting
cases only one of the descriptions remains. The governing equa-
tions are formulated as a system of the conservation laws for mass
and momentum of the particle/continuum ‘mixture’. This allows to
solve several problems, for example the above mentioned problem
of leaving/entering particles that is solved naturally as the parti-
cles are allowed to move freely in all parts of the system while
having impact on the solution only in the regions where their ‘par-
tial volume’ is nonzero, which happens without any violation of the
governing conservation laws.

In Ref. [7] a one-way coupling implementation of the same
hybrid framework, which accounts for the effect of molecular
dynamics on continuum hydrodynamics without the feedback, was
considered and tested as an alternative open boundary treatment
in the popular Molecular Dynamics (MD) package GROMACS [8]. In
the current paper, the former implementation in GROMACS has
been extended to dynamically tracking the atomistic-resolution
features of interest. To illustrate the accuracy and efficiency of
the new extended method, two simulations of two biomolecular
systems from the opposite ends of the spectrum of possibilities
are considered: diffusion of a small peptide, dialanine, molecule in
water for long simulation times and the interaction of the capsid
of a complete virus, porcine circovirus 2, with water at equilibrium
conditions.

2. The underlying two-way coupling approach and its
reduction to a one-way coupling model

Two representations of liquid are combined in the same frame-
work: 1) standard classical MD description where the matter is
the collection of point masses interacting with each other through
an empirically defined potential and 2) Landau-Lifshitz Fluctuat-
ing Hydrodynamics (LL-FH) continuum, that is the generalisation
of Navier-Stokes hydrodynamics with stochastic sources added to
statistically mimic thermal fluctuations at small scales. A nominally
two-phase liquid model is considered as a representation of the
same chemical substance (Fig. 1). The ‘phases’ are immersed into
each other as ‘fine grains’, the surface tension effects are irrelevant,
and both ‘phases’ simultaneously occupy the same control volume.
The partial concentrations of the MD ‘phase’ and the LL-FH ‘phase’
are equal to s and 1 − s, respectively, where s is a parameter of the
model 0 ≤ s ≤ 1. In general s is a user-defined function of space and
time which controls how much atomistic information is required
in a particular region of the simulation domain, Fig. 1.

The most general form of the governing equations which are
suitable for the continuous and discontinuous (particle) part of the
hybrid model is integral conservation laws. The integral conserva-
tion laws are formulated through a state variable coupling method
so that the mass of the mixture containing the two ‘phases’ is strictly
preserved as well as satisfying the second law of Newton so that
the change of total momentum of the system is equal to the sum of

all forces. Notably, an alternative approach would be to formulate
the same model in the framework of generalised functions where
discrete particles are represented as Heaviside functions (e.g. by
representing atoms as particles of a finite size corresponding to the
characteristic width of the interaction potential well), their deriva-
tives become Dirac delta functions, and so on, the model derivation
is similar to obtaining the Navier-Stokes solutions with discontin-
uous variables [9].

Following Ref. [7], let us consider a solution domain of volume
V0 which is broken down into elementary Eulerian cubical cells of
volume V. Each cell has 6 faces � = 1, .., 6 and it is filled with the
continuum part of the liquid and, at the same time, with the MD par-
ticles which correspond to the discrete representation of the same
chemical substance. It is assumed that the continuum part of the
nominally two-phase fluid has the same transport velocity as that
of the mixture. At isothermal condition this nominally two-phase
liquid in addition to the macroscopic equation of state satisfies the
following macroscopic conservation laws. For mass:
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where m and � = m/V are the mass and the density of the contin-
uum ‘phase’ of the elementary volume V, mp is the particle mass,
up is the MD velocity, u is the average velocity of the ‘mixture’
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of particles in the volume V. N� (t) is the number of particles cross-
ing the �th cell face with the normal dn� , �p = mp/V is the effective
density of an MD particle p which occupies the volume V, and ıtJ(�)

is the mass source/sink term which describes the transformation
of mass between the ‘phases’, ıt describes the change of a quantity
over time ıt, e.g. the counters of particle mass and momentum in
cell V accumulated over time ıt.

For momentum this is:
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where ˘ and ˜̆ are the deterministic and stochastic parts of the
Reynolds stress tensor in the LL-FH model, Fip is the MD force

exerted on particle p due to the pair potential interactions, and ıtJ
(u)
i

is the LL-FH/MD exchange term corresponding to the ith momen-
tum component.
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