
Please cite this article in press as: A. Fonseca, B. Cabral, Controlling the granularity of automatic parallel programs, J. Comput. Sci. (2016),
http://dx.doi.org/10.1016/j.jocs.2016.06.005

ARTICLE IN PRESSG Model
JOCS-516; No. of Pages 10

Journal of Computational Science xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Controlling the granularity of automatic parallel programs

Alcides Fonseca ∗, Bruno Cabral
CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

a r t i c l e i n f o

Article history:
Received 9 November 2015
Received in revised form 23 April 2016
Accepted 28 June 2016
Available online xxx

MSC:
00-01
99-00

Keywords:
Compiler
Parallel
Granularity

a b s t r a c t

Programming for concurrent platforms, such as multicore cpus, is very time consuming and requires
fine tuning of the final program in order to optimize the program parallel layout to the hardware archi-
tecture. Parallelization of programs is done by identification parts of code (tasks) that can be executed
concurrently and execution in different threads.

Current approaches for automatic parallelization cannot achieve the same performance of manually
parallelized programs. Current tools are limited and either parallelize everything possible, or are limited
to parallelizing the outer loops, which may miss potential parallelism that could improve the program.
Some approaches have controlled granularity during execution only, but without any relevant speedups.
Automatic Parallelizing Compilers have shown little overall speedup without the manual guidance of
programmers in terms of granularity. This work addresses the issue of achieving performant programs
from a fully automated parallelization.

We propose a cost-model to decide between different parallelization alternatives. By performing static-
analysis, we are able to estimate the time of tasks and parallelize them only if the time is larger than the
overhead of task spawning. Because the information during compilation might not be enough to make
that decision, we delay some of the decisions to runtime, when all variables are available. Thus, we use
an hybrid approach that performs optimizations at compile-time and at runtime.

Although we apply our model in the Java language on top of the Æminium runtime, our approach is
modular and can be applied to any programming language in any task-based runtime for shared-memory.

We have evaluated our approach in existing benchmark programs, in cases where a wrong granularity
value would result in slowing down the programs. We were able to achieve speedups greater than ver-
sions without granularity control, or with runtime-based granularity control information. We were also
able to generate programs with better performance than the state-of-the-art Java automatic parallelizing
compiler. Finally, in some cases we were able to outperform the human programmer.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, parallelization is the most popular and cost-effective
solution for improving the performance of computational intensive
programs. This process is seldom straight-forward and is time con-
suming, requiring the identification of parallel tasks, the inclusion
of synchronization logic in order to keep the same semantics and
optimization of memory and CPU usage.

Optimizing a parallel program is very time consuming as it
requires a trial-and-error approach. Different programs behave
very differently when executing in parallel depending on the data
and instruction layout. In order to optimize a program, different
decisions have to be made.

∗ Corresponding author.
E-mail addresses: amaf@dei.uc.pt (A. Fonseca), bcabral@dei.uc.pt (B. Cabral).

One has to know how many threads a program will use. Often
the parallelism extracted from a program is not enough to occupy
all CPU resources and, in those cases, a smaller thread count should
be used. For high-parallelism, a thread number equal to the num-
ber of cores or double the number of cores achieves the best
result.

Another decision is how many tasks to create, or how large tasks
should be (granularity). A parallel loop that iterates 1000 times can
create 1000 tasks, or even threads. Few computers have that num-
ber of cores, so there would exist a high overhead in thread creation.
The ideal distribution of iterations per tasks depends on several fac-
tors, being difficult to achieve even by an experienced programmer.
This is very time consuming as it requires trial and error.

Another decision is which work-stealing or work-sharing
approach to use. Some programs spawn several tasks in the begin-
ning, while others spawn tasks evenly through time and require
more load balancing.

http://dx.doi.org/10.1016/j.jocs.2016.06.005
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.06.005
dx.doi.org/10.1016/j.jocs.2016.06.005
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:amaf@dei.uc.pt
mailto:bcabral@dei.uc.pt
dx.doi.org/10.1016/j.jocs.2016.06.005

Please cite this article in press as: A. Fonseca, B. Cabral, Controlling the granularity of automatic parallel programs, J. Comput. Sci. (2016),
http://dx.doi.org/10.1016/j.jocs.2016.06.005

ARTICLE IN PRESSG Model
JOCS-516; No. of Pages 10

2 A. Fonseca, B. Cabral / Journal of Computational Science xxx (2016) xxx–xxx

Finally, irregular programs need to decide whether to parallelize
or not. For this, several cut-off mechanisms have been studied,
but there has not been any recommendation of which to use, as
it heavily depends on the program details.

All of these aspects colide with each other and studying the
different combinations is very time consuming and requires exe-
cuting the program before hand. In programs that have a very large
execution time, trying different combinations may not be feasible.

In this paper we propose an automated approach for controlling
the granularity of parallel programs. Our approach uses a cost-
model that is applied during static analysis and can prevent the
excessive creation of tasks during compilation and execution. This
control is useful to avoid spending time and memory building boil-
erplate structures to hold the parallel execution of code.

Our model is based on the fact that some instructions are more
expensive than others. We micro-benchmark different Java opera-
tions as well as the overhead in creating new tasks. We compose the
values of terminal instructions in the Java language to model each
AST node, and we analyze method invocations using runtime vari-
ables to delay the decision of task spawning to runtime. Our model
works even in recursive calls by performing two passes per method.
Furthermore, we also model the memory usage of each possible
task to decide if the memory overhead would require swapping.

Granularity control has been tackled mostly during execution,
where the internal runtime status is known. This is a novel approach
that avoids overheads in dynamic scheduling is most cases by mov-
ing that decision to compilation time. If the decision depends on
runtime information, the overhead also occurs, but the decision is
made with a prediction of the task cost.

The contributions of this work are as follows:

• Definition of a novel approach and cost-model for automatically
controlling the granularity and spawning of new tasks in parallel
programs.

• Implementation of the approach in a automatic parallel compiler
for the Java Language.

• Evaluation of the solution by comparing the performance of
programs parallelized using this model to programs without
granularity control and other state-of-the-art approaches.

The remaining of the paper is as follows: Section 2 describes the
state of the art in parallel programming and granularity control.
Section 3 describes our approach and the model used. Section 4 pro-
vides an evaluation of our solution compared to other approaches.
Finally, Section 5 draws conclusions and presents future work.

2. State of the art

In the last decade, scientific computing has been using parallel
programming as a default for large-scale processing. In order to
improve the performance of scientific programs, parallel programs
must execute as fast as possible. This means optimizing programs to
take the maximum advantage of the hardware. In order to achieve
this goal, the granularity of tasks has to be statically or dynamically
adjusted in order to balance the load between processors.

Traditionally, parallel programming has been achieved through
either manual parallelization or using annotation-based languages.
Manual parallelization has been done on top of threads, requiring
a manual granularity definition. Cilk [1] and OpenMP [2] are two
popular language extensions to easily express parallelism on top of
sequential code that support task and data parallelism. Task gran-
ularity is controlled by manually identifying tasks around code, or
by defining the size of each chunk of parallel loops.

More recently, new parallel-by-default languages have been
developed to simplify the writing of parallel programs. X10 [3],

Fortress [4] and Chapel [5] are examples of those languages, which
contain parallel constructs in the language (such as parallelfor).
By alternating between parallel and sequential constructs is also
possible to define the granularity of each task, leaving that burden
to the programmer. Æminium [6] automatically generates paral-
lel programs from sequential code, based on access-permissions.
In this language, programmers define the contracts for variable
accesses inside code blocks and the compiler will parallelize as
much as possible. Granularity control is not possible in this case,
as the programmer does not even need to know which parts will
be executed in parallel or not. However, from a performance stand-
point, Æminium programs rarely have speedup without granularity
control. The existing work-around was to annotate standard library
functions with a @Cheap annotation [7]. This work addresses the
issue of automatic control of the granularity of tasks.

Another approach for generating parallel programs is to use
automatic parallelization compilers such as SUIF [8], Cetus [9] and
Par4All [10]. These compilers apply the Polyhedral Model in order
to extract loop parallelism. SESAM [11] has controlled the granular-
ity of automatic parallel programs for asymmetric Multiprocessor
System-on-Chip by executing Par4All programs on the simula-
tor during compilation. Cetus performs parallelization only of the
outer loops, which may limit the parallelization on larger inner
loops inside small outer loops. Loop parallelization has been done
during runtime [12], but without any relevant speedups. Overall,
these automatic compilers show little performance without any
assistance from the programmer on thread-level parallelism iden-
tification or granularity control. This paper addresses that issue by
providing a granularity control mechanism for automatic paral-
lelization.

zJava [13] and OoOJava [14] are compilers for the Java language
that perform task-based automatic parallelization. zJava is based on
a runtime system that manages data accesses, while OoOJava per-
forms Thread-Level-Speculation on annotated blocks of code, thus
being limited in the type of operations that can be parallelized, and
requiring identification of parallel code. JPar [15] is another auto-
matic parallelization compiler for Java based on inferred access
annotations, similarly to Æminium. Since parallelization is very
fine-grained, we reach a point where the overhead of scheduling
a task is greater that the time obtained by parallelizing the task,
resulting in an overall slowdown. We have used an heuristic of
only parallelizing methods with 10 instructions, but this approach
is very limited.

Other approach to granularity control is ZettaBricks [16], which
improves the configuration of parallel programs on each run, based
on profiling. This approach only works for programs that are exe-
cuting several times over the time. ARTA [17] uses a runtime
policy to adaptively change the granularity of a STM engine. Multi-
versioning [18] has been used to generate several versions of loops,
which different unrolling levels and dynamically picking the ver-
sion based on runtime information. This approach has showed
speedups over loop-based applications.

Another alternative to manage the granularity of parallel pro-
grams is decide whether to schedule a task or not during execution.
Lazy Task Creation [19] is an approach that decides to create a task
or not depending on a the amount of tasks in the system. The two
most common factors are a threshold of maximum tasks in the sys-
tem and a maximum depth in the task graph [20], a mixed approach
or whether at least one processor has no work [21]. In Oracle, the
user defines the asymptotic complexity of a function and that is
used at runtime whether to spawn a new task or not. This approach
requires a heavy human interaction and has not gained traction.

Finally, we have used a simpler Cost-Model for deciding
between the GPU or CPU for Java code execution [22], also using
micro-benchmarks to support several GPU and CPU architec-
tures. A Cost-Model framework has also been used in [23] for

dx.doi.org/10.1016/j.jocs.2016.06.005

Download English Version:

https://daneshyari.com/en/article/4951113

Download Persian Version:

https://daneshyari.com/article/4951113

Daneshyari.com

https://daneshyari.com/en/article/4951113
https://daneshyari.com/article/4951113
https://daneshyari.com

