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Algorithms are given for determining weighted L∞ isotonic regressions satisfying order 
constraints given by a directed acyclic graph with n vertices and m edges. An �(m logn)

algorithm is given, but it uses parametric search, so a practical approach is introduced, 
based on calculating prefix solutions. For linear and tree orderings it yields isotonic and 
unimodal regressions in �(n log n) time. Practical algorithms are given for when the values 
are constrained to a specified set, and when the number of different weights, or different 
values, is � n. We also give a simple randomized algorithm taking �(m logn) expected 
time. L∞ isotonic regressions are not unique, so we examine properties of the regressions 
an algorithm produces. In this regard the prefix approach is superior to algorithms, such 
as parametric search and the randomized algorithm, which are based on feasibility tests.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A directed acyclic graph (dag) G = (V , E) with n vertices and m edges defines a partial order over the vertices, where 
u ≺ v if and only if there is a path from u to v . A function g on V is isotonic iff it is a weakly order-preserving mapping into 
the real numbers, i.e., iff for all u, v ∈ V , if u ≺ v then g(u) ≤ g(v). By weighted data on G we mean a pair of real-valued 
functions ( f , w) on V , where w , the weights, is non-negative, and f , the values, is arbitrary. Given weighted data ( f , w)

on G , an Lp isotonic regression is an isotonic function g on G that minimizes

(∑
v∈V w(v) · | f (v)−g(v)|p

)1/p 1 ≤ p < ∞
maxv∈V w(v) · | f (v)−g(v)| p = ∞

among all isotonic functions. The Lp regression error is the value of this expression. For 1 < p < ∞ the regression values 
are unique, but for L1 and L∞ they may not be. For example, on the vertices {1, 2, 3}, if f = 3, 1, 2.5 and w = 2, 2, 1: for 
1 < p < ∞ the Lp isotonic regression is g(1) = g(2) = 2, g(3) = 2.5, L1 isotonic regressions are of the form g(3) = 2.5
and g(1) = g(2) = x for x ∈ [1, 2.5], and L∞ isotonic regressions are of the form g(1) = g(2) = 2 and g(3) ∈ [2, 4.5]. In the 
example in Fig. 1 note that the regression values form level sets and that the regression is undefined in some regions.

Isotonic regression has long been applied to a wide range of problems in statistics [5,21,38,49] and classification [14,16,
44], with numerous recent applications to machine learning and data mining [27,28,34,35,37,50]. Routines for it are avail-
able in several machine-learning systems [39,40]. It is also used for some optimization problems [6,29]. It is of increasing 
importance as researchers reduce their assumptions, replacing parametric requirements with weaker assumptions about 
an underlying direction. For example, to shrink tumors via radiation and chemotherapy, it might be assumed that at any 
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Dots represent data, size represents their weight, lines are regression values

Fig. 1. An isotonic regression.

given radiation level the shrinkage increases with dose, and at any given dose the shrinkage increases with radiation. How-
ever, there may be no assumptions about a low dose and high radiation combination vs. a high dose and low radiation. 
Independent variables need not have a metric, merely an ordering, such as S < M < L < XL sizes.

Isotonic functions are also known as monotonic, monotonic increasing, or order-preserving (as a function from G to �), 
and the L∞ metric is also known as the supremum norm, Chebyshev distance, uniform metric, minimax optimization, or 
bottleneck criterion.

We develop algorithms for finding L∞ isotonic regressions for weighted data. In Section 3 we give an algorithm for 
general dags taking �(m log n) time. While conceptually simple, based on using parametric search as a black box procedure, 
it is of only theoretical interest because parametric search is very complex and infeasible. Therefore we give practical alter-
natives for several important special cases. E.g., when the number of different weights or different values is � n a practical 
search can be used (Section 4.1).

L∞ isotonic regressions are not unique, raising questions as to whether some are better than others. Previous algorithms 
have been compared only in terms of their running time, not in their mathematical properties when viewed as a map-
ping from data to isotonic functions. In Section 2 we examine properties such as minimizing the number of vertices with 
large regression errors, looking beyond just minimizing the worst error. By these measures the parametric search approach 
produces the worst regressions, lacking several properties that are shared by all L p regressions for 1 < p < ∞. In contrast, 
Strict, introduced in Section 2.1.3, has many of these properties. This topic is pursued further in [43].

Section 2.1.1 introduces Prefix, which is used in Section 6 to find isotonic regression for linear and tree orders and river 
isotonic regression on trees, where the regression value of a node is the same as the largest of its children. Unimodal 
regression on linear and tree orders is also examined, where the objective is to determine an optimal root and an isotonic 
regression towards the root. This arises in optimization problems such as competing failure modes [17,23,24] and multi-arm 
bandits [25,51].

Section 4.2 considers isotonic regression where the regression values are restricted to a specific set, such as the integers, 
using algorithms that are quite different from those in the other sections. An �(n log n) algorithm is given for finding an 
integer-valued isotonic regression for a linear order, improving upon the �(n2) algorithm of Liu and Ubhaya [33]. Section 7
contains concluding remarks.

Finally, Appendix A gives a very practical algorithm for arbitrary dags, replacing parametric search with a simple ran-
domized procedure. It takes �(m log n) expected time, not the worst-case time considered elsewhere in the paper, achieving 
this with high probability.

2. Background

Throughout we assume that G is a single connected component, and hence m ≥ n −1. If it has more than one component 
then isotonic regressions can be found for each component separately.

The complexity of determining an isotonic regression depends on the regression metric and the partially ordered set. For 
example, for a linear order it is well-known that a simple left-right scanning approach using pair adjacent violators, PAV, 
can be used to determine the L2 isotonic regression in �(n) time, L1 in �(n log n) time [3,42], and L∞ on unweighted data 
in �(n) time. In Section 6 an algorithm taking �(n log n) time is given for L∞ isotonic regression on weighted data.

L∞ isotonic regression on an arbitrary dag (poset) can easily be done in �(m) time for unweighted data (see Sec-
tion 2.1.1), but for weighted data the fastest previously known algorithm is �(n log2 n + m logn), due to Kaufman and 
Tamir [29]. Theorem 1 reduces this to �(m log n).

Given weighted data ( f , w) on dag G = (V , E), for vertex v ∈ V , the error of using r as the regression value at v , 
err(v, r), is w(v) · | f (v) −r|. Given vertices u and v , the weighted mean of their values, mean( f , w : u, v), is [w(u) f (u) +
w(v) f (v)] / [w(u) + w(v)]. Note that mean( f , w : u, v) has equal error for the two vertices. Let mean_err( f , w : u, v) denote 
this error.

There is a simple geometric interpretation of mean and mean_err: when regression values are plotted horizontally and 
the error is plotted vertically, the ray with x-intercept f (u) and slope −w(u) gives the error for using a regression value 
below f (u) at u, and the ray with x-intercept f (v) and slope w(v) gives the error for using a regression value above 
f (v) at v . The regression value where these lines intersect is mean( f , w : u, v), and the error of the intersection point is 
mean_err( f , w : u, v). See Fig. 2.
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