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In this paper we show how to construct a data structure for a string S of size N
compressed into a context-free grammar of size n that supports efficient Karp–Rabin 
fingerprint queries to any substring of S . That is, given indices i and j, the answer 
to a query is the fingerprint of the substring S[i, j]. We present the first O (n) space 
data structures that answer fingerprint queries without decompressing any characters. For 
Straight Line Programs (SLP) we get O (log N) query time, and for Linear SLPs (an SLP 
derivative that captures LZ78 compression and its variations) we get O (log log N) query 
time. We extend the result to solve the longest common extension problem in query time 
O (log N log�) and O (log � log log� + log log N) for SLPs and Linear SLPs, respectively. Here, 
� denotes the length of the LCE.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Karp–Rabin fingerprinting [1] is arguably the most well-known and widely used method for hashing strings. The key idea 
is to map substrings to a (large) numeric value by considering an sequence of characters as digits of an integer in base σ , 
where σ is the number of characters in the alphabet, and then hash this value into a polynomial universe. The hash value, 
called the fingerprint of the string, has constant size (in words) and is collision free with high probability when the hash 
function is chosen randomly at runtime.

Karp and Rabin [1] introduced fingerprinting to solve the classic string matching problem. Here we are given a text string 
S and a pattern string P and the goal is to identify all substrings of S that match P . To solve the problem the algorithm 
computes the fingerprint of P and compares it to the fingerprint of all substrings of length |P | in S . To efficiently compute 
all fingerprints of length |P | in S , the key observation is that the fingerprint for S[i, i + |P |] can be computed from the 
fingerprint of S[i − 1, i − 1 + |P |] in constant time using simple properties of the specific fingerprint function (discussed in 
detail in Sec. 2.1). This leads to a linear time (Monte Carlo) algorithm with a small probability of error. By rerunning and 

✩ An extended abstract of this paper appeared at the 13th Algorithms and Data Structures Symposium.
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rechecking the matches the algorithm can be converted into a linear expected time (Las Vegas) algorithm that makes no 
errors [1].

In addition to computing fingerprints of adjacent substrings as above, we can do other useful constant time string 
manipulations such as concatenation, substitution, and splits directly on the fingerprints without knowing the original 
strings. This has led to fingerprints being used as a central tool in algorithms for a wide and diverse range of problems, such 
as string matching, plagiarism detection, encryption, deduplication, bioinformatics, and data compression, see e.g., [2–16].

In all of the above scenarios the fingerprints are computed on uncompressed strings. In this paper, we consider the natural 
question of whether fingerprints can be efficiently computed on compressed strings.

Given a string S of size N and a Karp–Rabin fingerprint function φ, the answer to the fingerprint query, Fingerprint(i, j)
is the fingerprint φ(S[i, j]) of the substring S[i, j]. We consider the problem of constructing a data structure that efficiently 
answers fingerprint queries when the string is compressed into a context-free grammar of size n.

As a motivating example, we first consider a simple but space inefficient approach, which utilises the aforementioned 
string manipulation properties of Karp–Rabin fingerprints. Specifically, the property that given the fingerprints φ(S[1, i − 1])
and φ(S[1, j]), the fingerprint φ(S[i, j]) can be computed in constant time. By storing the fingerprints φ(S[1, i]) for i =
1, 2, . . . , N , a query can be answered in O (1) time. This data structure uses �(N) space which can be exponential in 
n. Another approach is to use the data structure of Ga̧sieniec et al. [17] which supports linear time decompression of a 
prefix or suffix of the string generated by a node. To answer a query we find the deepest node that generates a string 
containing S[i] and S[ j] and decompress the appropriate suffix of its left child and prefix of its right child. Consequently, 
the space usage is O (n) and the query time is O (h + j − i), where h is the height of the grammar. The O (h) time to find 
the correct node can be improved to O (log N) using the data structure by Bille et al. [18] giving O (log N + j − i) time for 
a Fingerprint(i, j) query. The query time of this approach is linear in the length of the decompressed substring, which 
can be large. It should be noted that in previous applications of Karp–Rabin fingerprints such as those cited above, the 
required fingerprints are typically of large substrings. In related work, for the special case of balanced grammars (by height 
or weight), Gagie et al. [19] showed how to efficiently compute fingerprints for Lempel–Ziv compressed strings.

We present the first data structures that answer fingerprint queries on general grammar compressed strings without 
decompressing any characters, and improve all of the above time–space trade-offs. Assume without loss of generality that 
the compressed string is given as a Straight Line Program (SLP). An SLP is a grammar in Chomsky normal form, i.e., each 
nonterminal has exactly two children. A Linear SLP is an SLP where the root is allowed to have more than two children, and 
for all other internal nodes, the right child must be a leaf. Linear SLPs capture the widely-implemented LZ78 compression 
scheme [20] and its variations. Our data structures give the following theorem.

Theorem 1. Let S be a string of length N compressed into an SLP G of size n. We can construct data structures that support Fingerprint

queries in:

(i) O (n) space and query time O (log N)

(ii) O (n) space and query time O (log log N) if G is a Linear SLP.

Hence, we show a data structure for fingerprint queries that has the same time and space complexity as for random 
access in SLPs.

Our fingerprint data structures are based on the idea that a random access query for i produces a path from the root to 
a leaf labelled S[i]. The concatenation of the substrings produced by the left children of the nodes on this path produce the 
prefix S[1, i]. We store the fingerprints of the strings produced by each node and concatenate these to get the fingerprint 
of the prefix instead. For Theorem 1(i), we combine this with the fast random access data structure by Bille et al. [18]. For 
Linear SLPs we use the fact that the production rules form a tree to do large jumps in the SLP in constant time using a 
level ancestor data structure. Then a random access query is dominated by finding the node that produces S[i] among the 
children of the root, which can be modelled as the predecessor problem.

Furthermore, we show how to obtain faster query time in Linear SLPs using finger searching techniques. A finger for 
position i in a Linear SLP is a pointer to the child of the root that produces S[i]. To avoid potential confusion we clarify that 
the term finger is of independent origin to the term fingerprint and the similarity in their names is purely coincidental.

Theorem 2. Let S be a string of length N compressed into an SLP G of size n. We can construct an O (n) space data structure such that 
given a finger f for position i or j, we can answer a Fingerprint(i, j) query in time O (log log D) where D = |i − j|.

Along the way we give a new and simple reduction for solving the finger predecessor problem on integers using any 
predecessor data structure as a black box.

In compliance with all related work on grammar compressed strings, we assume that the model of computation is the 
RAM model with a word size of log N bits.
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