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We propose a highly parallel and distributed multiset computing model having as its 
underlying structure an undirected graph whose nodes are processors, each endowed with 
a polarity and with a set of rules all of the same kind, one of increment, decrement 
or substitution. Processors communicate with each other via a protocol based on the 
compatibility between their polarization and the polarization of the data, as computed by 
a valuation mapping. We show that this model can simulate any multiset Turing machine. 
In its turn, the new model can be simulated by the most general variant of multiset Turing 
machine.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The notion of rewriting is in principle applicable to any discrete structure composed of individual elements which can 
undergo different evolutions, while maintaining the same overall structure. Individual elements can be more or less complex 
and structures can be more or less complex and constrained, multisets of atoms representing one of the simplest possible 
combinations.

In [1] a formalism based on multiset rewriting, called constraint multiset grammar was introduced with the aim of pro-
viding a high-level framework for the definition of visual languages. Constraint multiset grammars were investigated in [2]
with a view to the parsing complexity of visual languages. These grammars may be viewed as a bridge between the usual 
string grammars, dealing with string rewriting, and constraint logic programs, dealing with set rewriting. Other devices 
based on multiset rewriting have been reported in [3,4] where abstract rewriting multiset systems were used for modelling 
some features of the population development in artificial cell systems. Furthermore, a Chomsky-like hierarchy of grammars 
rewriting multisets was proposed in [5]. In all these approaches, the multisets are processed in a sequential, non-distributed 
way. In a membrane system [6], multisets are processed in parallel; moreover, the structures on which rewriting occurs can 
in turn be the subject of transformations, where membranes that present different levels of nesting can be dissolved. The 
work presented here proposes another highly parallel and distributed way of processing multisets resembling a bio-inspired 
computational model based on string rewriting introduced in [7], called network of polarized evolutionary processors (NPEP 
for short).

Informally speaking, such a network can be defined as a graph whose nodes host processors performing evolutionary 
operations on the strings contained in the corresponding node. An NPEP alternates evolutionary and communication steps, 
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until a predefined halting condition is fulfilled. In each evolutionary step, all processors change simultaneously the con-
tents of their nodes according to their associated sets of rules. In the communication step, all the strings that satisfy the 
communication protocol are exchanged between connected nodes. The protocol regulating the communication step is based 
on a valuation mapping which assigns to each string an integer value, depending on the values assigned to its symbols. 
Actually, it is not the exact value of a string which is considered, but just the sign of this value. By means of this valua-
tion, one may metaphorically say that the strings are electrically polarized. Thus, as the nodes are polarized as well, string 
migration from one node to another through the channel between two cells, according to polarization, seems to be more 
natural, as well as easier to be implemented. It is worth mentioning that this model is closely related to the flow-based 
programming paradigm, see, e.g. [8]. A flow-based programming application also defines a network whose nodes are called 
“black box” processes which exchange data among them across some connections that are externally specified. In an NPEP, 
the connections among the processors are fixed for the whole computation. Note also the difference between this model 
and the model of distributed computing with mobile agents [9], which is preferable when the data needed for computation 
is physically dispersed.

Note that the structure of the string does not matter when computing its valuation as the valuation of any anagram of a 
given string is the same. Therefore, we can consider a representation of the commutative closure of a string instead of the 
string itself. This is our approach in this note. The paper is organized as follows. In the next section, we define the main 
concepts that will be used throughout the paper: multiset, macroset, valuation mapping, multiset Turing machine, polarized 
multiset processor, network of polarized multiset processors (NPMP for short), etc. We then prove that NPMPs can simulate 
every multiset Turing machine. The converse simulation is shown for the most general variant of multiset Turing machine.

2. Basic definitions

For a finite set A, we denote by card(A) the cardinality of A. A finite multiset over a finite set A is a mapping σ : A −→N; 
σ(a) expresses the number of copies of a ∈ A in the multiset σ . The empty multiset over a set A is denoted by εA , that is 
εA(a) = 0 for all a ∈ A. We use the same notation for the empty set and empty macroset, namely ∅.

In what follows, a multiset containing the elements b1, b2, . . . , br , any of them possibly with repetitions, will be denoted 
by 〈b1, b2, . . . , br〉. Each multiset σ over a set A of cardinality n may also be viewed as an array of size n with non-negative 
entries.

The set of all multisets over A is denoted by A#. A subset of A# is called macroset over A. The weight of a multiset σ as 
above is ‖ σ ‖=

∑
a∈A

σ(a), and ‖ σ ‖B=
∑
b∈B

σ(b) for any subset B of A.

Normally, we use lower case Greek letters for multisets and capital Greek letters for macrosets. For two multisets σ , τ
over the set A we define

• the addition multiset σ + τ with (σ + τ )(a) = σ(a) + τ (a) for all a ∈ A;
• the difference multiset σ − τ with (σ − τ )(a) = max(σ (a) − τ (a), 0) for each a ∈ A;
• scalar multiplication multiset cσ , with c ∈N, with (cσ)(a) = cσ(a) for all a ∈ A.

A function ϕ : A −→ Z is called a valuation of A in Z. This function may be naturally extended to the set A# by ϕ(σ ) =∑
a∈A

ϕ(a) · σ(a).

2.1. Multiset Turing machines

We recall from [10] the definition of a multiset Turing machine. Roughly speaking, a multiset Turing machine consists 
of a bag in which a multiset of symbols is placed and of a read–write head which can pick up a symbol out of the bag 
(that may be the empty symbol) and add at most one symbol (that may also be the empty one) to the content of the bag. 
Reading (picking up) and writing (adding) a symbol (element) different than the empty symbol is meant as decreasing and 
increasing the number of copies of that symbol by 1, respectively. Reading or writing the empty symbol is meant to leave 
the multiset unchanged. The machine works as follows: it starts in the initial state having a multiset in its bag. Now, while 
being in some state, the machine reads a symbol from the bag, changes its state and writes a symbol to the bag content. 
Such a machine accepts a multiset when it enters a final state with an empty bag. In any other case, the initial multiset is 
rejected. It is worth mentioning that multiset Turing machines are very close to some variants of register machines defined 
in [11].

Formally, a multiset Turing machine (shortly, MTM) is a construct

M = (Q , V , U , f ,q0, �, F ),

where Q and F ⊆ Q are the finite sets of states and final states, respectively, V and U are the input and the bag alphabets, 
respectively, V ⊂ U , q0 is the initial state, � is the empty symbol in U \ V , and f is the transition mapping from Q × U into 
the set of all subsets of Q × U . Furthermore, there are no q, s ∈ Q such that (s, �) ∈ f (q, �). A configuration is a pair (q, τ ), 
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