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a  b  s  t  r  a  c  t

We  propose  the  use of  Vapnik’s  vicinal  risk  minimization  (VRM)  for training  decision  trees  to approx-
imately  maximize  decision  margins.  We  implement  VRM  by propagating  uncertainties  in the  input
attributes  into  the labeling  decisions.  In  this  way,  we  perform  a global  regularization  over  the decision
tree  structure.  During  a training  phase,  a decision  tree  is  constructed  to minimize  the  total  probability
of  misclassifying  the  labeled  training  examples,  a process  which  approximately  maximizes  the  margins
of  the  resulting  classifier.  We  perform  the  necessary  minimization  using  an  appropriate  meta-heuristic
(genetic  programming)  and  present  results  over  a range  of  synthetic  and benchmark  real  datasets.  We
demonstrate  the  statistical  superiority  of VRM  training  over conventional  empirical  risk  minimization
(ERM)  and  the  well-known  C4.5  algorithm,  for a range  of  synthetic  and  real datasets.  We  also  conclude
that  there  is  no  statistical  difference  between  trees  trained  by ERM  and  using  C4.5.  Training  with VRM  is
shown  to  be  more  stable  and  repeatable  than  by ERM.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Decision trees are a popular and widely used classification paradigm, largely
due the ease with which the trained classifiers can be interpreted. Unfortunately, it
has  been shown that constructing an optimal decision tree (DT) is an NP-complete
problem [1] and so a number of greedy heuristics have been proposed over the
years, probably the foremost being the C4.5 algorithm [2], which seek sequentially
to  maximize information gain at each node in the tree. Typically with C4.5, a DT
is  trained to the point of over-fitting and then pruned with a second heuristic to
improve generalization.

As an alternative training method for DTs, a wide range of meta-heuristics have
been explored; see [3] for a recent survey. In this work we have used genetic pro-
gramming (GP) since, as a population-based stochastic search method, GP has been
shown to be well-suited to finding approximate solutions to NP-hard problems, such
as  DT training. Koza [4] seems to have been the first to propose GP for this purpose
although see [5] for a comprehensive review.

Previous work on the evolutionary training of DTs has clearly established
that  credible decision trees can be induced by minimizing empirical risk [6] (i.e.,
misclassification error, or the fraction of patterns incorrectly classified) over
some training set. Notwithstanding, there is a dearth of work which quantitatively
compares GP results with conventional tree induction methods, such as C4.5.
A  number of authors—for example, [7]—have noted that GP-induced trees can
give smaller misclassification errors compared to C4.5 but smaller errors do not
necessarily denote any statistical significance. Since conventional tree induction
methods are greedy algorithms, one would expect sub-optimal performance.
The theoretical advantage of meta-heuristic methods is that they have been
demonstrated to provide good—although not necessarily optimal—solutions to
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NP-hard problems with acceptable computing times. Evolutionary methods could
therefore be expected to out-perform greedy methods, in general.

The principal and novel contribution of this paper is to introduce a new risk
functional, vicinal risk, for training DTs, which addresses the challenging issue of
how to regularize tree structures. To support this, we present statistically founded
comparison between trees induced using the new risk and conventional methods.
Since, we believe, minimizing new risk functional can only be carried-out using an
appropriate meta-heuristic, this paper reports the application of soft computing to
an  important problem in machine learning.

In general, training in machine learning is ill-posed [6] and empirical risk mini-
mization (ERM) does not necessarily produce best generalization over an unseen test
set,  a problem which is exacerbated by small datasets; it is this ‘small data’ scenario
we  explicitly address in this paper. The deficiencies of ERM are illustrated in Fig. 1
for the trivial case of classifying linearly separable patterns with a plane. Reduc-
tion of the ER to zero can be achieved by any of the infinite number of hyperplanes
passing between the two groups of patterns. In particular, hyperplane ‘B’—although
minimizing the risk to zero—lacks the robustness to cope with even small noise per-
turbations of the pattern attributes. It is obvious that hyperplane ‘A’ will deliver the
greatest ‘margin’ against noise. Since empirical risk minimization (ERM) does not
necessarily produce acceptable margins, this motivates us to investigate a superior
risk functional and apply it to decision trees.

The principal contribution of this paper is to report the induction of decision
trees using vicinal risk minimization (VRM) [8] which displays significantly greater
stability than ERM. Since this new risk is a continuous function, it is able to dis-
criminate between the competing decision surfaces in Fig. 1 which (discrete) ERM
cannot distinguish. We make statistical comparisons with decision trees induced
with VRM and conventional ERM using the same GP method. As an underpinning
baseline, we compare the above results with trees induced using the popular, deter-
ministic C4.5 algorithm. We demonstrate that VRM is able to produce decision trees
with superior generalization performance compared to C4.5, and GP-trained trees
which minimize ER.

In Section 2 we  describe the adaptation of VRM to decision trees. In Section 3 we
discuss related work on decision trees and their training using genetic programming
(GP); we review genetic programming and its single and multiple objective variants.
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Fig. 1. Illustration, for the simple case of classifying linearly separable patterns,
of  the deficiency of minimizing empirical risk. The crosses and circles represent
patterns of differing classes.

We  outline our experimental methodology in Section 4, and present experimental
results in Section 5. We offer further insights into the application of VRM to decision
trees in Section 6; Section 7 concludes the paper.

2. Vicinal risk

Starting with the development of vicinal risk for a conventional
scoring classifier given by Vapnik [8], for some set of � training data,
D  = {x1 → y1, x2 → y2, . . .,  x� → y�} drawn from a data distribu-
tion P(x, y), where xi ∈ R

N and y ∈ { −1, + 1}, the task of training a
scoring classifier is to select some discriminant function f(x) → y.
We desire to select the f(x) which minimizes the expected risk
R(f), which will ensure optimum generalization over future unseen
examples drawn from P(x, y) where:

R(f ) =
∫

L[f (x), y]dP(x, y) (1)

and L is some loss function. Unfortunately, P(x, y) is not known in
practice and so the conventional approach has been to approximate
P(x, y) using the set of samples {xi, yi}i ∈ [1, . . .,  �]:

P(x, y) ≈ 1
�

�∑
i=1

ı(x − xi) (2)

where ı is the Dirac delta function, and to minimize the empirical
risk, Remp (i.e., the expected 0/1 loss) over the training set. We  can
conveniently take the loss function to be [8]:

L[f (x), y] = H[−yf (x)] (3)

where H is the Heaviside step function. Thus for x-values which
would give rise to a misclassification, (3) is unity; conversely, for
x-values which yield correct classification, the loss is zero. Thus,
empirical risk, Remp is defined as:

Remp(f ) = 1
�

�∑
i=1

H[−yif (xi)] (4)

As is clear from Section 1, the fundamental shortcoming of the
0/1 loss is due to its discrete nature, in particular, that a pattern is
either classified correctly, in which case it contributes zero to the
cumulative loss, or the pattern is misclassified and so contributes
unity to the loss. Crucially, no account is taken of the margin by
which a pattern is misclassified (or indeed, correctly classified). A
misclassified pattern which is just the wrong side of a decision sur-
face is weighted equally with a pattern that is a very large distance
from the decision surface; intuitively, the latter case should be
treated as more serious than the former. As a logical consequence,
a pattern’s distance from the decision surface should weight its
contribution to the loss.

Vapnik [8] has motivated vicinal risk by assuming that the
(unknown) data distribution is locally ‘smooth’ in which case P(x,
y) can be approximated by placing a vicinity function on each train-
ing datum—this process can be thought of as either resampling or,
equivalently, interpolating D. Since the shortcomings of 0/1 loss
are due to its discrete nature, smoothing the training set will have
the effect of stabilizing the training process. Vapnik [8] described
two possible types of vicinity functions, hard and soft.  Hard vicinity
functions have an abrupt cutoff at some distance from a train-
ing datum—under a 2-norm, this would be a ball or hypersphere
centered on each datum. Whereas a hard vicinity function has a
constant, non-zero value up to the cutoff distance and zero beyond,
a soft vicinity function, such as a Gaussian kernel, typically has a
peak value at the training datum and a monotonically reducing
value with increasing distance from the datum. Entirely equiva-
lently, placing a kernel over each training datum can be viewed
as approximating P(x, y) using a Parzen windows density estima-
tor [9,10] for which a Gaussian kernel is a natural choice. Here we
develop the soft vicinity function approach because: (i) it is more
tolerant of the setting of scale of the kernel and (ii) there is a tech-
nical requirement with hard vicinity functions that they do not
overlap in pattern space [8].

Taking the loss function given in (3), analogous to minimizing
(1), we wish to select the f which minimizes the vicinal risk, RVR
which is the expectation of (3) over the data distribution. Writing
this functional in modified form from that given by Vapnik [8]:

RVR(f ) =
∫

L[f (x), y]dP(x, y) (5)

≈ 1
�

�∑
i=1

∫
H[−yif (x)]G(x|xi, �2

i )dx (6)

where G() is the Gaussian kernel of variance �2
i

placed on
the ith datum. Here P(x, y) is approximated by the Parzen win-
dows estimate of a sum of Gaussians. The integral within (6) has
a straightforward interpretation as the hypervolume, in the N-
dimensional pattern space, of the portion of the ith kernel which
falls on the ‘wrong’ side of the decision surface and would hence
give rise to misclassification. A number of properties of vicinal risk
minimization (VRM) is apparent:

• Under VRM, we  seek to minimize a continuous function (6),
thereby removing the problem with 0/1 loss of being discrete.
Patterns contribute to the loss depending on their distance from
the decision surface, or more strictly, the hypervolume of the ker-
nel function falling on the ‘wrong’ side of the decision surface.
It is clear that correctly-classified patterns a long way from the
decision surface will make a very small contribution to the loss
and will hence have a minimal influence on the placement of the
decision surface—this is highly desirable since only data in the
vicinity of the decision surface run the risk of misclassification
and should ‘negotiate’ the location of the decision surface.
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