
JID:YJCSS AID:3001 /FLA [m3G; v1.186; Prn:15/09/2016; 11:26] P.1 (1-21)

Journal of Computer and System Sciences ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Closure properties of pattern languages ✩

Joel D. Day a, Daniel Reidenbach a,∗, Markus L. Schmid b

a Department of Computer Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
b Fachbereich 4 – Abteilung Informatik, Universität Trier, D-54286 Trier, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 March 2015
Received in revised form 26 May 2016
Accepted 7 July 2016
Available online xxxx

Keywords:
Pattern languages
Closure properties

Pattern languages are a well-established class of languages, but very little is known about
their closure properties. In the present paper we establish a large number of closure
properties of the terminal-free pattern languages, and we characterise when the union
of two terminal-free pattern languages is again a terminal-free pattern language. We
demonstrate that the equivalent question for general pattern languages is characterised
differently, and that it is linked to some of the most prominent open problems for pattern
languages. We also provide fundamental insights into a well-known construction of E-
pattern languages as unions of NE-pattern languages, and vice versa.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Pattern languages were introduced by Dana Angluin [1] in order to model the algorithmic inferrability of patterns that
are common to a set of words. In this context, a pattern is a sequence of variables and terminal symbols, and its language
is the set of all words that can be generated from the pattern by a substitution that replaces all variables in the pattern
by words of terminal symbols. Hence, more formally, a substitution is a terminal-preserving morphism, i.e., a morphism
that maps every terminal symbol to itself. For example, the pattern language of the pattern α := x1x1ax2b, where x1, x2
are variables and a, b are terminal symbols, is the set of all words that have a square as a prefix, followed by an arbitrary
suffix that begins with the letter a and ends with the letter b. Thus, e.g., abbabbaab is contained in the language of α,
whereas bbbaa is not. It is a direct consequence of these definitions that a pattern language is either a singleton or infinite.
Furthermore, it is worth noting that two basic types of pattern languages are considered in the literature, depending on
whether the variables must stand for nonempty words (referred to as nonerasing or NE-pattern languages) or whether they
may represent the empty word (so-called extended, erasing or simply E-pattern languages).

While the definition of pattern languages is simple, many of their properties are known to be related to complex phe-
nomena in combinatorics on words, such as pattern avoidability (see Jiang et al. [9]) and ambiguity of morphisms (see
Reidenbach [17]). Hence, the knowledge on pattern languages is still patchy, despite recent progress mainly regarding deci-
sion problems (see, e.g., Freydenberger, Reidenbach [7], Fernau, Schmid [5], Fernau et al. [6] and Reidenbach, Schmid [18])
and the relation to the Chomsky hierarchy (see Jain et al. [8] and Reidenbach, Schmid [19]).

Establishing the closure properties of a class of formal languages is one of the most classical and fundamental research
tasks in formal language theory and any respective progress normally leads to insights and techniques that yield a better
understanding of the class. In the case of pattern languages, it is known since Angluin’s initial work that they are not closed

✩ A preliminary version [4] of this paper was presented at the conference DLT 2014.

* Corresponding author.
E-mail addresses: J.Day@lboro.ac.uk (J.D. Day), D.Reidenbach@lboro.ac.uk (D. Reidenbach), MSchmid@uni-trier.de (M.L. Schmid).

http://dx.doi.org/10.1016/j.jcss.2016.07.003
0022-0000/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2016.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:J.Day@lboro.ac.uk
mailto:D.Reidenbach@lboro.ac.uk
mailto:MSchmid@uni-trier.de
http://dx.doi.org/10.1016/j.jcss.2016.07.003

JID:YJCSS AID:3001 /FLA [m3G; v1.186; Prn:15/09/2016; 11:26] P.2 (1-21)

2 J.D. Day et al. / Journal of Computer and System Sciences ••• (••••) •••–•••

under most of the usual operations, including union, intersection and complement. However, these non-closure properties
can be shown by using very basic example patterns and exploiting peculiarities of the definition of pattern languages. For
example, if a pattern does not contain a variable, then its language is a singleton; hence the union of any two distinct
singleton pattern languages contains two elements, and therefore it cannot be a pattern language. Furthermore, the inter-
section of two pattern languages given by patterns that start with different terminal symbols is empty and the empty set,
although a trivial language, is not a pattern language as well. Since, apart from a strong result by Shinohara [20] on the
union of NE-pattern languages, hardly anything is known beyond such immediate facts, we can observe that in the case of
pattern languages the existing closure properties fail to contribute to our understanding of their intrinsic properties.

It is the main purpose of this paper to investigate the closure properties of pattern languages more thoroughly. To this
end, in Section 3, we consider the closure properties of two important subclasses of pattern languages, namely the classes
of terminal-free NE- and E-pattern languages, i.e., pattern languages that are generated by patterns that do not contain any
terminal symbols. This choice is motivated by the fact that terminal-free patterns have been a recent focus of interest in
the research on pattern languages and, furthermore, most existing examples for non-closure of pattern languages (including
the two examples for union and intersection given in the previous paragraph) do not translate to the terminal-free case.
In Section 3.1, we completely characterise when the union of two terminal-free pattern languages is again a terminal-free
pattern language and, in Section 3.2, we prove their non-closure under intersection, for which the situation is much more
complicated compared to the operation of union.

We consider general pattern languages in Section 4, and we provide complex examples demonstrating that it is probably
a very hard task to obtain full characterisations of those pairs of pattern languages whose unions or intersections are again
a pattern language. In Section 4.3, we also study the question whether an E-pattern language can be expressed by the union
of nonerasing pattern languages and, likewise, whether an NE-pattern language can be expressed by the union of erasing
pattern languages. This question is slightly at odds with the classical investigation of closure properties, since we apply a
language operation to members of one class and ask whether the resulting language is a member of another class. However,
in the case of pattern languages, this makes sense, since every NE-pattern language is a finite union of E-pattern languages
and every E-pattern language is a finite union of NE-pattern languages (see Jiang et al. [9]), a phenomenon that has been
widely utilised in the context of inductive inference of pattern languages (see, e.g., Wright [22], Shinohara, Arimura [21]).

2. Definitions and preliminary results

The symbols ∪, ∩ and \ denote the set operations of union, intersection and set difference, respectively. For sets U and B
with B ⊆ U , B := U \ B is the complement of B .

Let N := {1, 2, 3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A, a word (over A) is a finite sequence of symbols
from A, and ε stands for the empty word. The notation A+ denotes the set of all nonempty words over A, and A∗ := A+ ∪{ε}.
For the concatenation of two words w1, w2 we write w1 · w2 or simply w1 w2, and wn stands for the n-fold concatenation
of the word w . We say that a word v ∈ A∗ is a factor of a word w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1 · v ·u2. If u1
(or u2) is the empty word, then v is a prefix (or a suffix, respectively) of w . If w = w0 v1 w1 v2 · · · vn wn and v = v1 v2 · · · vn ,
for some w0, wn ∈ A∗ , wi, v j ∈ A+ , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n, then v is a subsequence of w . The notation |K | stands for the
size of a set K or the length of a word K . For a w ∈ A∗ and a ∈ A, |w|a denotes the number of occurrences of the symbol
a in w . A word w is primitive if, for any u such that w = uk , k = 1. The primitive root of a word w is the primitive word u
such that w = uk , k ∈N.

For any alphabets A, B , a morphism is a function h : A∗ → B∗ that satisfies h(v w) = h(v)h(w) for all v, w ∈ A∗; h is
said to be nonerasing if, for every a ∈ A, h(a) 	= ε. A morphism h is ambiguous (with respect to a word w) if there exists a
morphism g satisfying g(w) = h(w) and, for a letter a in w , g(a) 	= h(a). If such a morphism g does not exist, then h is
called unambiguous (with respect to w). A morphism σ : A∗ → B∗ is periodic if for some (primitive) word w ∈ B∗ , σ(x) ∈ {w}∗
for every x ∈ A. The word w will be referred to as the primitive root of σ . If |σ(x)| = 1 for every x ∈ A, then σ is 1-uniform.

Let � be a finite alphabet of so-called terminal symbols and X a countably infinite set of variables with � ∩ X = ∅. We
normally assume X := {x1, x2, x3, . . .}. A pattern is a nonempty word over � ∪ X , a terminal-free pattern is a nonempty word
over X ; if a word contains symbols from � only, then we occasionally call it a terminal word. For any pattern α, we refer
to the set of variables in α as var(α). If the variables in a pattern α are labelled in the natural way, then it is said to be in
canonical form, i.e., α is in canonical form if, for some n ∈ N, var(α) = {x1, x2, . . . , xn} and, for any xi, x j ∈ var(α) with i < j,
there is a prefix β of α such that xi ∈ var(β) and x j /∈ var(β). A pattern α is a one-variable pattern if | var(α)| = 1. A pattern
α is periodicity forcing if for any alphabet � and morphisms g, h : var(α)∗ → �∗ , g(α) = h(α) implies g and h are periodic
or g = h. A morphism h : (� ∪ X)∗ → (� ∪ X)∗ is terminal-preserving if h(a) = a for every a ∈ �. The residual of a pattern α
is the word hε(α), where hε : (� ∪ X)∗ → (� ∪ X)∗ is a terminal preserving morphism with hε(x) := ε for every x ∈ var(α).
A terminal-preserving morphism h : (� ∪ X)∗ → �∗ is called a substitution.

Definition 1. Let � be an alphabet, and let α ∈ (� ∪ X)∗ be a pattern. The E-pattern language of α is defined by LE,�(α) :=
{h(α) | h : (� ∪ X)∗ → �∗ is a substitution}. The NE-pattern language of α is defined by LNE,�(α) := {h(α) | h : (� ∪ X)∗ →
�∗ is a nonerasing substitution}.

Note that we call a pattern language terminal-free if there exists a terminal-free pattern that generates it.

Download English Version:

https://daneshyari.com/en/article/4951252

Download Persian Version:

https://daneshyari.com/article/4951252

Daneshyari.com

https://daneshyari.com/en/article/4951252
https://daneshyari.com/article/4951252
https://daneshyari.com

