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We study controller synthesis problems for finite-state Markov decision processes, where 
the objective is to optimize the expected mean-payoff performance and stability (also 
known as variability in the literature). We argue that the basic notion of expressing the 
stability using the statistical variance of the mean payoff is sometimes insufficient, and 
propose an alternative definition. We show that a strategy ensuring both the expected 
mean payoff and the variance below given bounds requires randomization and memory, 
under both the above definitions. We then show that the problem of finding such a strategy 
can be expressed as a set of constraints.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Markov decision processes (MDPs) are a standard model for stochastic dynamic optimization. Roughly speaking, an MDP 
consists of a finite set of states, where in each state, one of the finitely many actions can be chosen by a controller. For 
every action, there is a fixed probability distribution over the states. The execution begins in some initial state where the 
controller selects an outgoing action, and the system evolves into another state according to the distribution associated with 
the chosen action. Then, another action is chosen by the controller, and so on. A strategy is a recipe for choosing actions. In 
general, a strategy may depend on the execution history (i.e., actions may be chosen differently when revisiting the same 
state) and the choice of actions can be randomized (i.e., the strategy specifies a probability distribution over the available 
actions). Fixing a strategy for the controller makes the behaviour of a given MDP fully probabilistic and determines the 
usual probability space over its runs, i.e., infinite sequences of states and actions.

A fundamental concept of performance and dependability analysis based on MDP models is mean payoff. Let us assume 
that every action is assigned some rational reward, which corresponds to some costs (or gains) caused by the action. The 
mean payoff of a given run is then defined as the long-run average reward per executed action, i.e., the limit of partial aver-
ages computed for longer and longer prefixes of a given run. For every strategy σ , the overall performance (or throughput) 
of the system controlled by σ then corresponds to the expected value of mean payoff, i.e., the expected mean payoff. It is 
well known (see, e.g., [23]) that optimal strategies for minimizing/maximizing the expected mean payoff are positional (i.e., 
deterministic and independent of execution history), and can be computed in polynomial time. However, the quality of ser-
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vices provided by a given system often depends not only on its overall performance, but also on its stability (sometimes also 
called variability). For example, an optimal controller for a live video streaming system may achieve the expected through-
put of approximately 2 MBits/sec. That is, if a user connects to the server many times, he gets 2 Mbits/sec connection on 
average. If an acceptable video quality requires at least 1.8 Mbits/sec, the user is also interested in the likelihood that he 
gets at least 1.8 Mbits/sec. That is, he requires a certain level of overall stability in service quality, which can be measured 
by the variance of the mean payoff, called global variance in this paper. The basic computational question is “given rationals 
u and v, is there a strategy that achieves the expected mean payoff u (or better) and variance v (or better)?”. Since the expected 
mean payoff can be “traded” for smaller global variance, we are also interested in approximating the associated Pareto curve
consisting of all points (u, v) such that (1) there is a strategy achieving the expected mean payoff u and global variance v; 
and (2) no strategy can improve u or v without worsening the other parameter.

The global variance says how much the actual mean payoff of a run tends to deviate from the expected mean payoff. 
However, it does not say anything about the stability of individual runs. To see this, consider again the video streaming 
system example, where we now assume that although the connection is guaranteed to be fast on average, the amount of 
data delivered per second may change substantially along the executed run for example due to a faulty network infras-
tructure. For simplicity, let us suppose that performing one action in the underlying MDP model takes one second, and the 
reward assigned to a given action corresponds to the amount of transferred data. The above scenario can be modelled by 
saying that 6 Mbits are downloaded every third action, and 0 Mbits are downloaded in other time frames. Then the user 
gets 2 Mbits/sec connection almost surely, but since the individual runs are apparently “unstable”, he may still see a lot 
of stuttering in the video stream. As an appropriate measure for the stability of individual runs, we propose local variance, 
which is defined as the long-run average of (ri(ω) − mp(ω))2, where ri(ω) is the reward of the i-th action executed in a 
run ω and mp(ω) is the mean payoff of ω. Hence, local variance says how much the rewards of the actions executed along 
a given run deviate from the mean payoff of the run on average. For example, if the mean payoff of a run is 2 Mbits/sec 
and all of the executed actions deliver 2 Mbits, then the run is “absolutely smooth” and its local variance is zero. The level 
of “local stability” of the whole system (under a given strategy) then corresponds to the expected local variance. The basic 
algorithmic problem for local variance is similar to the one for global variance, i.e., “given rationals u and v, is there a strategy 
that achieves the expected mean payoff u (or better) and the expected local variance v (or better)?”. We are also interested in the 
underlying Pareto curve.

Observe that the global variance and the expected local variance capture different and to a large extent independent
forms of systems’ (in)stability. Even if the global variance is small, the expected local variance may be large, and vice versa.

1.1. The results

Our results are as follows:

1. (Global variance). The global variance problem was considered before in [26], but only under the restriction of memo-
ryless strategies. We first show that in general, randomized memoryless strategies are not sufficient for Pareto optimal 
points for global variance (Example 1). We then establish that 2-memory strategies are sufficient, and that the problem 
of existence of a strategy can be reduced to the problem of finding a solution of a set of non-linear constraints. We 
show that the basic algorithmic problem for global variance is in PSPACE, and the approximate version can be solved in 
pseudo-polynomial time.

2. (Local variance). The local variance problem comes with new conceptual challenges. For example, for unichain MDPs, 
deterministic memoryless strategies are sufficient for global variance, whereas we show (Example 2) that even for 
unichain MDPs both randomization and memory are required for local variance. We establish that 3-memory strategies 
are sufficient for Pareto optimality for local variance, and again give a set of non-linear constraints describing the 
existence of a strategy. We show that the basic algorithmic problem (and hence also the approximate version) is in NP.

3. (Zero variance). Finally, we consider the problem where the variance is optimized to zero (as opposed to a given 
non-negative number in the general case). In this case, we present polynomial-time algorithms to compute the op-
timal mean-payoff that can be ensured with zero variance (if zero variance can be ensured) for both the cases. The 
polynomial-time algorithms for zero variance for mean-payoff objectives is in sharp contrast to the NP-hardness for 
cumulative reward MDPs [19].

To prove the above results, one has to overcome various obstacles. For example, although at multiple places we build on 
the techniques of [13] and [2] which allow us to deal with maximal end components (sometimes called strongly commu-
nicating sets) of an MDP separately, we often need to extend these techniques. Unlike the works [13] and [2] which study 
multiple “independent” objectives, in the case of the global variance any change of value in the expected mean payoff im-
plies a change of value of the variance. Also, since we do not impose any restrictions on the structure of the strategies, we 
cannot even assume that the limits defining the mean payoff and the respective variances exist; this becomes most apparent 
in the case of the local variance, where we need to rely on delicate techniques of selecting runs from which the limits can 
be extracted. Another complication is that while most of the work on multi-objective controller synthesis for MDPs deals 
with linear objective functions, our objective functions are inherently quadratic due to the definition of variance. Finally, 
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