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a  b  s  t  r  a  c  t

Using  different  shapes  of recognition  regions  in  Artificial  Immune  Systems  (AIS)  are  not  a  new  issue.
Especially,  ellipsoidal  shapes  seem  to be  more  intriguing  as  they have  also  been  used  very effectively
in  other  shape  space-based  classification  methods.  Some  studies  have  done  in  AIS  through  generating
ellipsoidal  detectors  but  they  are  restricted  in their detector  generating  scheme  –  Genetic  Algorithms
(GA).  In  this  study,  an  AIS  was  developed  with  ellipsoidal  recognition  regions  by  inspiring  from  the  clonal
selection  principle  and  an  effective  search  procedure  for ellipsoidal  regions  was  applied.  Performance
evaluation  tests  were  conducted  as  well  as application  results  on  some  real-world  classification  problems
taken  from  UCI  machine  learning  repository  were  obtained.  Comparison  with  GA  was  also  done  in some
of these  problems.  Very  effective  and  comparatively  good  classification  ratios  were  recorded.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Since its beginning, shape space representation scheme has taken a general
acceptance in Artificial Immune Systems (AIS) community. In many AIS based
algorithms, system units which are usually called as Antibodies (Abs) have some
recognition regions and any input datum in an Ab’s region is recognized by these
Abs.  Thus, input space should be carefully covered by these Abs. So far, except from
some studies [1–4], spherically shaped recognition regions – this is why  a term
of  recognition ball is used – have been utilized. In algorithms which use spherical
recognition regions, a threshold that is equal to the radius of ball should be passed
to  enter the recognition region of an Ab and this threshold is same in all directions.
However, two data points can be very near in one direction whereas they are far
from each other in another direction. So, for an effective algorithm, threshold may
be  different with respect to the direction and this is only possible by using ellipsoidal
recognition regions.

Classifying data with ellipsoidal detectors is not a new finding. Some studies
used this issue in classification and clustering problems. For example in [5], authors
generated Ellipsoidal Adaptive Resonance Theory (E-ART) and Ellipsoidal ART-MAP
(E-ART-MAP). They concluded that, depending on the problem, E-ART and E-ART-
MAP  can be good classifiers with respect to their fuzzy counterparts. In another
study, minimum volume ellipsoids (MVE) covering data in a class were found and
Hopfield Neural Network was  utilized to find these ellipsoids [6]. Authors of [7]
proposed MVE  clustering as an alternative clustering technique to k-means for data
clusters with ellipsoidal shapes. They saw that very effective clustering perform-
ances were obtained with ellipsoidal k-means and it is worth to continue studying.
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Many other studies were conducted related with MVE  [8–12].  A similar classification
method which uses ellipsoids is the study of [13,14]. In their study, authors devel-
oped an algorithm to find best ellipsoidal regions covering the input space. From the
findings on some benchmark data, their system can said to be good and comparable
with state-of-art works. Authors of [15] presented an effective stream clustering
algorithm called Hyper-Ellipsoidal Clustering for Evolving data Stream (HECES) by
making a few changes in the recently proposed Hyperellipsoidal Clustering for
Resource-Constrained Environments (HyCARCE) algorithm [16], which is a strong
clustering technique, in particular designed for low dimensional static data. Hsiao
et  al. in [17] presented a neural network based on the Ellipsoidal Function Mod-
ulated Adaptive Resonance Theory (ART) (EFM-ART). In [18], a novel method was
introduced to diagnose power transformer faults based on Ellipsoidal Basis Function
(EBF) neural network and this method was compared with Radial Basis Function
(RBF) neural network. In another study, a convex quadratic programming repre-
sentable Minimum Mahalanobis Enclosing Ellipsoid (QP-MMEE) was presented for
generally unbalanced dataset classification [19]. Forghani et al. [20] investigated an
Extended Support Vector Data Description (ESVDD) which describes data by using
a  hyper-ellipse and as a result, ESVDD can represent data better than SVDD in the
input space.

Similar to the above studies conducted in machine learning area, some
researchers in AIS field have also used the idea of ellipsoidal recognition regions
in  their algorithms. In their study, authors of [1,2] have used Genetic Algorithm
(GA) to evolve ellipsoidal detectors in negative selection algorithm. However they
used  negative selection as an inspiration source from the immunology, most of the
work is done by GAs in that ellipsoidal recognition regions were evolved by GA.
So, the origin of these studies can be regarded to GAs more than immune system.
Some other studies can also be cited here like them but they are all the same with
regard to their origin – GA finds best detectors [3,4]. In the study of [3], two synthetic
datasets (star and multi-cluster) were used with four types of detector shapes which
are  hyper-ellipses, hyper-rectangles, hyper-spheres and mixed shapes. According to
ROC curves of this study, different results were obtained for each detector shape,
and  low error rates were produced by mixed shaped detectors as compared to other
single shaped detectors in both datasets. In the study of [4] however, 2-dimensional
synthetic data was  used with six types of shapes which are cross, triangle, circle,
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stripe, intersection and pentagram. Hart in [21] presented a study to improve and
expand the work of [22]. As a result, choosing recognition area can affect the elimina-
tion of antigen and the memory capacity of emergent networks. In work of [22], they
mentioned the effects of changeable forms of the recognition area of cells in an idio-
typic  network simulation. Stibor et al. [23] investigated the behavior of the negative
selection algorithm on artificial datasets by different-sized detectors. Classification
performances of negative selection, positive selection and statistical anomaly detec-
tion techniques were analyzed on a high-dimensional KDD (Knowledge Discovery
and Data Mining) dataset.

Whereas GA can be an effective search technique to find optimum ellipsoidal
shapes, it is a generic search procedure with random mutation and recombination
procedures. So, finding optimum ellipsoids can take time and sometimes ellipsoids
which are indeed not optimum but seem to be locally optimum can be found (phe-
nomenon called as catching to local optimum). Because of these negative points in
GA, we  developed an AIS algorithm that uses ellipsoidal recognition regions which
are  evolved with clonal selection principle in AIS. To fasten the search process,
directed mutations depending on affinities are proposed in changing ellipsoidal
shapes. At first, performance of developed system was  evaluated and compared with
GA  on some artificially generated data. Then, comparisons with state-of-art works
and  GA were done on some real world classification problems. These problems are
Pima Indians Diabetes Disease classification problem, Statlog Heart Disease classi-
fication problem and BUPA Liver Disorders classification problem whose datasets
were taken from the UCI machine learning repository. Besides of these problems,
the proposed system was also run for 5 more datasets which were again taken from
UCI. Results were given in tabulated form.

2. Development of ellipsoidal clonal selection algorithm

2.1. Mathematical basis for ellipsoids

2.1.1. Definition of ellipsoids in N-dimensional space
Before giving the details of the developed Ellipsoidal AIS system,

preliminary information related with ellipsoidal shapes in higher
dimensional space are given in the following.

The equation for two-dimensional ellipse is given in the follow-
ing [24]:

(x − x0)2

a2
+ (y − y0)2

b2
= 1 (1)

where (x0, y0) are the center points and a and b are the lengths of
semi-axes of x and y respectively. The following equation shows a
matrix formulation of Eq. (1) [25]:

(x − w)T V�VT (x − w) = 1 (2)

Eq. (2) gives the same formula in (1) if,

x =
[

x

y

]
, � =

[
1/a2 0

0 1/b2

]
, w =

[
x0

y0

]
and V =

[
1 0

0 1

]

If, V�VT in Eq. (2) is represented with
∑

, then general form of
an ellipsoid for n dimension can be written as:

(x − w)T
∑

(x − w) = 1 (3)

where w is a n × 1 vector representing the center of the ellipsoid
and

∑
is a real symmetric positive-definite n × n matrix. Here, V

is a n × n matrix whose columns are orthonormal eigenvectors of∑
and � is a n × n diagonal matrix whose entries are eigenvalues

associated with the eigenvectors in V. The ith column of matrix V
stands for the orientation of the ellipsoid in ith dimension. Besides,
� defines the lengths of ellipsoid’s semi-axes as the following:

�i = 1√
�i,i

(4)

where �i is the length of the ith semi-axes [25].
Changing the orientation of the semi-axes means rotating the

ellipsoid. A rotation in n-space is defined by a n × n orthonormal
matrix. V is an orthonormal matrix, and defines this rotation. If
x − w is a point on the surface of some ellipsoid, then V(x  − w) is a

point on the surface of an ellipsoid that has been rotated by V. This
is shown with the substitution (x − w) → V(x  − w), leading to:

V(x − w)T V�VT V(x − w) = 1 (5)

This equation can be re-arranged as:

(VT V(x − w))
T
�VT V(x − w) = 1 (6)

Since V is orthonormal, VTV = I. Thus, Eq. (6) simplifies to Eq. (2).
Rotation preserves the relative positions of points on the ellipsoid.
Hence, if point p is on a semi-axis in the un-rotated ellipsoid, then
Vp is on the rotated ellipsoid. Therefore, the orientation of the semi-
axes is the columns of V [25].

2.1.2. Volume of ellipsoid
Tee showed that the volume of an n dimensional ellipsoid is

calculated by the Eq. (7) [26]:

Volume = ˝n

n∏
i=1

1√
�j,i

(7)

where �i,i is 1/(� i)2 in which �i is the length of ith semi-axes. ˝n

is the volume of an n-dimensional unit hyper-sphere. Smith and
Vamanamurthy [27] show that the volume of an n-dimensional unit
hypersphere is calculated by the following equation:

˝n = �n/2

� (1 + (1/2)n)
(8)

Here in Eq. (8), � ( ) is the Gamma  function. The � ( ) function
is a mathematical extension of the factorial function from positive
integers to real numbers [28].

To determine whether a p point is inside the ellipsoid or not, the
following squared Mahalanobis distance can be used [29]:

(x − w)T
∑

(x − w)  < 1 (9)

If the criterion in Eq. (9) holds, the point p is inside the ellipsoid.

2.1.3. Gram-Schmidt orthonormalization
To obtain an orthonormal V matrix from a randomly generated

matrix, Gram-Schmidt orthonormalization technique is utilized
[30].

Let {x1, . . ..  . . , xn} be a set of n linearly independent vectors and
let {y1, . . ..  . . , yn} be the orthogonal set of vectors to be determined
[30]. Then,

y1 = x1

y2 = x2 − 〈x2, y1〉
〈y1, y1〉y1

y3 = x3 − 〈x3, y2〉
〈y2, y2〉y2 − 〈x3, y1〉

〈y1, y1〉y1

.

.

.

yk = xk −
k−1∑
i=1

〈
xk, yi

〉〈
yi, yi

〉 yi

(10)

After obtaining {y1, . . ..  . . , yn} orthogonal set by using Eq. (10),
each vector in this set is divided to its length to obtain the orthonor-
mal  set of {z1, . . ..  . . , zn}:

zi = yi∥∥yi

∥∥ (11)
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