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The metric dimension of a graph G is the size of a smallest subset L ⊆ V (G) such that for 
any x, y ∈ V (G) with x �= y there is a z ∈ L such that the graph distance between x and z
differs from the graph distance between y and z. Even though this notion has been part 
of the literature for almost 40 years, prior to our work the computational complexity of 
determining the metric dimension of a graph was still very unclear. In this paper, we show 
tight complexity boundaries for the Metric Dimension problem. We achieve this by giving 
two complementary results. First, we show that the Metric Dimension problem on planar 
graphs of maximum degree 6 is NP-complete. Then, we give a polynomial-time algorithm 
for determining the metric dimension of outerplanar graphs.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the complexity of the Metric Dimension problem, in particular on planar graphs. To define 
the Metric Dimension problem, we need several supporting notions. Let G be a graph. We say that z ∈ V (G) resolves two 
vertices x, y ∈ V (G) with x �= y if the length of a shortest path in G from z to x is different from the length of a shortest 
path in G from z to y. Then a set L ⊆ V (G) is called a resolving set (or metric generator) of G if every pair x, y ∈ V (G) with 
x �= y is resolved by some z ∈ L. We sometimes refer to the elements of a resolving set (or in fact, of any set of vertices that 
we hope to extend to a resolving set) as landmarks. Now the metric dimension of G is the cardinality of a smallest resolving 
set of G (such a smallest resolving set is known as a metric basis). The problem of determining the metric dimension of a 
given graph G is called Metric Dimension, but is also known as Harary’s problem or the rigidity problem. The problem was 
defined independently by Harary and Melter [21] and Slater [29].

There are several reasons for studying the Metric Dimension problem. The first reason is that, even though the prob-
lem is part of Garey and Johnson’s book on computational intractability [20], very little is known about the computational 
complexity of this problem. Garey and Johnson proved thirty years ago that the decision version of Metric Dimension is NP-

✩ An extended abstract of this paper appeared as On the Complexity of Metric Dimension in L. Epstein, P. Ferragina (eds.). Algorithms – ESA 2012, 20th 
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complete on general graphs [26] (another proof appears in [27]). Also it was shown that there exists a 2 log n-approximation 
algorithm on arbitrary graphs [27], which is best possible within a constant factor under reasonable complexity assump-
tions [3,23]. Hauptmann et al. [23] showed hardness of approximation on sparse graphs and on complements of sparse 
graphs. On the positive side, fifteen years ago, Khuller et al. [27] gave a linear-time algorithm to compute the metric dimen-
sion of a tree (see also [29,21]), as well as a characterization for graphs with metric dimension 1 and several interesting 
properties of graphs with metric dimension 2. Similar results were independently obtained by Chartrand et al. [8]. Before we 
published a preprint of our work, no further results were known about the complexity of this problem. It is thus interesting 
if the substantial, long-standing gap on the tractability of this problem (between trees and general graphs) can be bridged.

After a preprint of our work appeared, a large number of papers have appeared that further investigate the complexity 
of Metric Dimension on graph classes. On the negative side, Epstein et al. [13] provided NP-hardness results for split 
graphs, bipartite graphs, co-bipartite graphs, and line graphs of bipartite graphs. Hoffman and Wanke [24], based on the 
NP-hardness reduction for planar graphs given in this paper, were able to prove that the problem is NP-hard on Gabriel 
unit disk graphs. More recently, Foucaud et al. [18,19] showed that the problem is NP-hard on permutation graphs and 
interval graphs. Fernau and Rodríguez-Velázquez [15] showed that on general graphs there is no algorithm running in 
O (|V (G)|O (1) 2o(|V (G)|)) time unless the Exponential Time Hypothesis fails; this complements their algorithm running in 
O (|V (G)|O (1) 2|V (G)|) time. Hartung and Nichterlein [22] settled the parameterized complexity for the standard parameter 
(the size of the resolving set) on general graphs, by showing that the problem is W[2]-complete even if the maximum 
degree is at most three; they also give a strong approximation hardness result on such graphs.

On the positive side, Epstein et al. [13] presented polynomial-time algorithms for a weighted variant of Metric Dimen-

sion on several graphs including paths, trees, and cographs. Fernau et al. [14] gave a polynomial-time algorithm for Metric 
Dimension on chain graphs, a subclass of bipartite graphs. Foucaud et al. [18,19] showed that Metric Dimension is fixed-
parameter tractable for the standard parameter on interval graphs. Belmonte et al. [4] generalized this result to graphs 
of bounded treelength, which include not only interval graphs, but also chordal graphs, permutation graphs, and AT-free 
graphs.

The second reason for studying Metric Dimension is that the problem has received a lot of attention from researchers 
in different disciplines, in particular as a difficult graph theoretical problem (see e.g. [1,6,8,23] and references therein). For 
instance, a recent survey by Bailey and Cameron [1] notes an interesting connection to group theory and graph isomorphism. 
It was also shown to be applicable to certain cop-and-robber games [7] and to routing in networks [17]. Therefore it makes 
sense to continue the investigation on the computational complexity of Metric Dimension and narrow the above-mentioned 
complexity gap.

The third reason for studying Metric Dimension, particularly on planar and outerplanar graphs, is that known techniques 
in the area do not seem to apply to it. Crucially, it seems difficult to formulate the problem as an MSOL-formula, without 
which we cannot apply Courcelle’s Theorem [9] on graphs of bounded treewidth. Hence, there is no easy way to show 
that the problem is polynomial-time solvable on graphs of bounded treewidth. Also, the line of research pioneered by 
Baker [2], which culminated in the recent meta-theorems on planar graphs using the framework of bidimensionality [11,
16], does not apply, as Metric Dimension does not exhibit the required behavior. For example, the metric dimension of 
a (two-dimensional) grid is two [27] (see also [6]), whereas bidimensionality requires it to be roughly linear in the size 
of the grid. Moreover, the problem is not closed under contraction. This behavior of Metric Dimension contrasts that of 
many other problems, even that of other nonlocal problems such as Feedback Vertex Set. Hence, by studying the Metric 
Dimension problem, there is an opportunity to extend the toolkit that is available to us on planar graphs.

Our results In the present work, we significantly narrow the tractability gap of Metric Dimension. From the hardness side, 
we show that Metric Dimension on planar graphs, called Planar Metric Dimension, is NP-hard, even for planar graphs 
of maximum degree 6. From the algorithmic side, we show that there is a polynomial-time algorithm to find the metric 
dimension of outerplanar graphs.

The crux to both of these results is our ability to deal with the fact that the Metric Dimension problem is extremely 
nonlocal. In particular, a landmark can resolve vertices that are very far away from it. The paper thus focusses on constraining 
the effects of a landmark to a small area. The NP-hardness proof does this by constructing a specific family of planar graphs 
for which Metric Dimension is essentially a local problem. The algorithm on outerplanar graphs uses a tree structure to 
traverse the graph, together with several data structures that track the influence of landmarks on other vertices. As we show 
later, this is sufficient to keep the nonlocality of the problem in check. We believe that our algorithmic techniques are of 
independent interest, and could lead to (new) algorithms for a broad class of nonlocal problems.

Overview of the NP-hardness proof As a corollary of the work by Dahlhaus et al. [10], we prove a new version of Planar 3-SAT

to be NP-complete. We reduce this problem to Metric Dimension. This is done by constructing a planar graph consisting 
of clause gadgets and variable gadgets. Let n be the number of variables. Each variable gadget must have four landmarks: 
three at known, specific locations, but for the fourth we have three different choices. They correspond to the variable being 
true, false, or undefined. These 4n landmarks are a resolving set if and only if they resolve all pairs of vertices in the clause 
gadgets, which happens only if they correspond to a satisfying truth assignment of the SAT-instance.



Download English Version:

https://daneshyari.com/en/article/4951283

Download Persian Version:

https://daneshyari.com/article/4951283

Daneshyari.com

https://daneshyari.com/en/article/4951283
https://daneshyari.com/article/4951283
https://daneshyari.com

