
JID:JDA AID:673 /FLA [m3G; v1.201; Prn:17/02/2017; 13:43] P.1 (1-8)

Journal of Discrete Algorithms ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Range selection and predecessor queries in data aware space 

and time ✩

M. Oğuzhan Külekci a,∗, Sharma V. Thankachan b

a Informatics Institute, Istanbul Technical University, Istanbul, Turkey
b Department of Computer Science, University of Central Florida, Orlando, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
Data structures
Range searching
Predecessor search
Data compression

On a given vector X = 〈x1, x2, . . . , xn〉 of integers, the range selection (i, j, k) query is finding 
the k-th smallest integer in 〈xi, xi+1, . . . , x j〉 for any (i, j, k) such that 1 ≤ i ≤ j ≤ n, and 
1 ≤ k ≤ j − i + 1. Previous studies on the problem proposed data structures that occupied 
additional O (n · logn) bits of space over the X itself that answer the queries in logarithmic 
time. In this study, we replace X and encode all integers in it via a single wavelet tree by 
using S = n · log u + ∑

log xi + o(n · log u + ∑
log xi) bits, where u is the number of distinct 

�log xi� values observed in X . Notice that u is at most 32 (64) for 32-bit (64-bit) integers 
and when xi > u, the space used for xi in the proposed data structure is less than the 
Elias-δ coding of xi . Besides data-aware coding of X , the range selection is performed in 
O (log u + log x′) time where x′ is the k-th smallest integer in the queried range. This result 
is adaptive and achieves the range selection regardless of the size of X , and the time-
complexity depends on the answer itself. Additionally, we can answer range predecessor 
queries (i, j, x′): return the largest element y ≤ x′ in 〈xi, xi+1, . . . , x j〉, in O (log u + log x′)
time. In summary, to the best of our knowledge, we present the first algorithms using 
data-aware space and time for the general range selection and predecessor problems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and previous work

Range selection (or quantile) on a given vector X = 〈x1, x2, . . . , xn〉 of integers is the process of selecting the k-th smallest 
integer among the subsequence 〈xi, xi+1, . . . , x j〉 of X for any (i, j, k) conforming 1 ≤ i ≤ j ≤ n, and 1 ≤ k ≤ j − i + 1. The 
special case of the problem when k = 	 j−i+1

2 
 is called the range median query, which is detecting the element appearing 
in the middle position when the sequence is sorted. Since median is an important parameter in statistics, it has received 
significant attention in the related studies [3,9,2,16] among with a wide range of applications such as document listing, or 
2-d searching, just to name a few.

The naive solution of the problem is sorting the elements in the queried range, which can be achieved in O (d · log d)

time, for d = j − i + 1, and then simply picking up the integer appearing at k-th position of the sorted list. That sorting 
process may be repeated O (n2) times on all possible (i, j) ranges, and the results may be stored in quadratic space so that 

✩ Early part of this work appeared in the Proceedings of Data Compression Conference (DCC), 2015 [18].

* Corresponding author.
E-mail addresses: kulekci@itu.edu.tr (M.O. Külekci), sharma.thankachan@ucf.edu (S.V. Thankachan).

http://dx.doi.org/10.1016/j.jda.2017.01.002
1570-8667/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jda.2017.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:kulekci@itu.edu.tr
mailto:sharma.thankachan@ucf.edu
http://dx.doi.org/10.1016/j.jda.2017.01.002


JID:JDA AID:673 /FLA [m3G; v1.201; Prn:17/02/2017; 13:43] P.2 (1-8)

2 M.O. Külekci, S.V. Thankachan / Journal of Discrete Algorithms ••• (••••) •••–•••

Table 1
Time and space complexities of the solutions proposed to answer general range selection query (i, j, k) on a given 
integer sequence X = 〈x1, x2, . . . , xn〉, where σ is the number of distinct elements in X , u is the number of distinct 
�log xi� values observed on X , and x′ is the k-th smallest value we seek in the range (answer of the query). S(X)

denotes the total space used to represent the integers in X , which is typically n · log max{xi ∈ X} bits. Notice that 
O (n) words space is equal to O (n logn) bits in word-RAM model assuming the word size is �(logn).

Time-complexity Space complexity (in bits)

Gagie et al. (2009) [9] O (logσ) S(X) + n logσ + o(n logσ)

Brodal et al. (2011) [2] O (logn/ log log n) S(X) + O (n logn)

Jørgensen & Larsen (2011) [16] O (log k/ log log n + log logn) S(X) + O (n logn)

Chan & Wilkinson (2013) [4] O (log k/ log log n + 1) S(X) + O (n logn)

This study O (log u + log x′) (n log u + ∑
∀i log xi)(1 + o(1))

any query can be answered in O (1) time. Such a path is not of interest due to the heavy load of sorting, and also the 
requirement of quadratic space, a combination that would be impractical for relatively large n.

It is noteworthy that the quickselect algorithm, that was introduced in an early study by Hoare [14] achieves range 
selection in linear time by modifying the quicksort [15]. In quickselect, the queried range is split into two by selecting a 
random pivot, and then collecting the items that are less than this pivot in one bucket and rest in the other, akin to the 
quicksort. Same splitting is recursively applied on the bucket that contains the kth smallest item until the answer is reached. 
Since at each step only one of the two buckets is processed, the overall time complexity becomes O (d) for the range select 
assuming the selected pivot splits the range into equal sized partitions. In the worst case, where the pivot just decreases 
the range only by one, the time-complexity becomes O (d2).

The naive solution and the quickselect algorithm described above forms a base-line for evaluating the solutions of the 
general range selection queries, where it is seen that given a dynamic range the linear-time solution is trivial. Thus, the 
research in that direction focused on achieving logarithmic time-complexities as we review in section 2.

Range predecessor is a related problem, where the query (i, j, x′) asks to report the largest element y ≤ x′ in 
〈xi, xi+1, . . . , x j〉, in O (log u + log x′) time. Here also, O (1) query time is trivial using quadratic space. However, our aim 
is to develop space and time efficient solutions for both problems with data-dependent wavelet trees, that take into account 
of the compressibility of the data.

1.1. Previous studies

In [16], the authors classify the solutions on range selection problem into two as polynomial-space and near-linear-space 
algorithms according to the space occupied by their data structures. Although the polynomial-space algorithms provide 
constant time query handling, they are not of interest to us due to their large memory consumption. Table 1 lists the time 
and space complexities of some of the solutions offered to date for range selection.

In [3], following the approach introduced in [10], the authors proposed to create a binary search tree over X in a bottom-
up approach, where they first sort X , create the leaf nodes associated with an integer xi ∈ X . In the inner nodes of the tree 
they keep two indices per integer included in the leaves of that node (see [3] for details). They achieve O (logn/ log log n)

time-complexity, and the data structure they use occupies O (n) words. Similarly, [2] achieves the same time-complexity 
O (log n/ log log n).

In Gagie et al. [9], instead of a bottom-up approach, a top-down scheme was preferred by creating a wavelet tree. At 
each node of the wavelet tree a bitmap is maintained in which the integers represented in that node that are smaller than 
the pivot value are marked with 0, and others by 1. By selecting the pivot equal to the median of the sequence at each step, 
the tree becomes a balanced tree with height 	logσ 
, where σ is the number of distinct elements in X . The processing of 
a range selection query begins at the root node by counting the number of 0s and 1s from the i-th bit to the j-th bit. In 
case k is larger than the number of 0s then the right child is selected and k is updated accordingly. Otherwise, left child 
is followed without updating k value. In each case the (i, j) values are updated properly to keep track on the next node. 
These operations require rank queries to be run efficiently, and that can be computed in O (1) time by using an additional 
o(.) space [22,23,20].

Jørgensen and Larsen introduced the first adaptive solution to the problem. In their scheme the space usage was again 
linear in the size of the input X sequence. However, the time-complexity was improved as O (log k/ log log n + log log n). 
Finally Chan and Wilkinson [4] presented a linear space data structure with optimal O (log k/ log log n) query time.1

On a related node, a generalization of this problem called tree path selection queries is studied in [13,24]. Here the 
integers are associated with the nodes in a tree and an (i, j, k) query asks to report the k-th smallest integer among the 
integers associated with the nodes on the path from node i to j.

For the range predecessor problem, there are several space–time trade-offs known (refer to Table 2). Firstly, the quadratic 
space can be reduced to O (n1+ε) for any constant ε > 0 and keep the query time constant [5]. On the other hand, wavelet 
trees can handle the queries in O (logσ) time [8]. Among linear space solutions, we have an O (log n/ log log n) time solution 

1 Note that the space and the query time for their range counting structure is O (n log logn) and O (log k/ log log n + log logn) respectively.



Download English Version:

https://daneshyari.com/en/article/4951302

Download Persian Version:

https://daneshyari.com/article/4951302

Daneshyari.com

https://daneshyari.com/en/article/4951302
https://daneshyari.com/article/4951302
https://daneshyari.com

