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a  b  s  t  r  a  c  t

In this  paper,  a novel  algorithm  based  on  the  bacterial  colony  chemotaxis  (BCC)  algorithm  is  developed
to  solve  multi-objective  optimization  problems.  The  main  objective  of  the  paper  is  to improve  the  per-
formance  of  BCC.  Hence,  the  main  work  is to add  three  improvements,  which  are  improved  adaptive  grid,
oriented  mutation  based  on  grid  and  adaptive  external  archive,  in order to improve  the  convergence
performance  on  multi-objective  optimization  problems  and  the  distribution  of  solutions.  This paper  also
presents  a first  and  simple  convergence  analysis  of the general  Pareto-based  MOBCC.  The proposed  algo-
rithm is validated  using  12  benchmark  problems  and  four  performance  measures  are  implemented  to
compare  its  performance  with  the  MOBCC  algorithm,  the NSGA-II  algorithm,  and  the MOEA/D  algorithm.
The  simulation  results  confirmed  the  effectiveness  of the  algorithm.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

It is common that problems with two or more (often conflicting)
objectives to be simultaneously optimized in real-world appli-
cations. Such problems are called multi-objective optimization
problems (MOP). MOP  are optimization problems that optimize
more than one objective function in a specific area and are to find
solutions that contain a vector of decision variables and satisfy the
restrictions. A multi-objective optimization problem can be formu-
lated as follows [1]:

Minimize/Maximize : fi(x) i = 1, 2, . . .,  N

Subject to : gj(x) ≤ 0 j = 1, 2, . . .,  J

hk(x) = 0 k = 1, 2, . . .,  K

where x = (x1, x2, . . .,  xn) is the vector of decision variables; fi(x) are
the i objective functions which satisfy the J inequalities gj(x) and
the K equalities hk(x) constraint functions.

Different from single objective optimization problem (SOP), it is
impossible to get a single optimal for multi-objective optimization
problems. MOP  contains a set of optimal solutions which are non-
dominated and balanced between several objective functions, that
is Pareto optimal front (POF). The traditional ways can not deal
with these complex problems sufficiently for the lack of integral
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mathematical models and the ability to handle a large number of
variables. Now there have been a lot of elitist algorithms to solve
multi-objective optimization problems, such as non-dominated
Sorting Genetic Algorithm (NSGA-II) [2], Strength Pareto Evolu-
tionary Algorithm (SPEA-II) [3], Multiple Objectives Particle Swarm
Optimization (MOPSO) [4], and bacterial chemotaxis (BC) [5].

Many people also have researched on the algorithms for
real-world application. Niknam et al. [6] developed multi-
objective new fuzzy self-adaptive particle swarm optimization
(MNFSAPSO) to overcome local optima problems and he also
proposed an Evolutionary Algorithm using the Modified Teaching-
Learning-Algorithm [7] and the two algorithms are used to solve
multi-objective optimization problems in distribution network
with renewable energy sources. Chen [8,9] proposed bacterial
colony foraging optimization (BCFO) algorithm for complex opti-
mization problems and it is applied to a real-world application of
dynamic RFID network optimization.

Recently, bacterial colony chemotaxis (BCC) optimization algo-
rithm has attracted more and more attention. Bremermann [10]
pioneered chemotaxis algorithm in 1974. Basing on the research of
Berg, Brown and Bremermann, Müller et al. [11] developed BC opti-
mization algorithm in 2002, which is an environmental chemical
attractant inspired optimization algorithm that performs similar to
standard evolutionary algorithm but worse than evolution strate-
gies with enhanced convergence properties. However, it opened
up a new research field. Li et al. [12] introduced the colony to
improve the basic BC algorithm, proposing bacterial colony chemo-
taxis (BCC) optimization algorithm. Guzmán [5] firstly applied the
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BC algorithm to solve multi-objective optimization problems and
got better result than the NSGA-II genetic algorithm and the par-
ticle swarm-based algorithm NSPSO. Cheng et al. [13] developed
MOBCC algorithm to figure out Multi-objective optimization prob-
lems and it performed well. Lu et al. [14] improved multi-objective
optimization bacterial colony chemotaxis with Lamarckian con-
straint handling method to solve low-carbon emission/economic
power dispatch.

BC is a simple and robust algorithm. In BC algorithm, every bac-
terium searches the optimal value according to its own judgment.
Bacteria use their own memory to make a temporal space compar-
ison of the gradients found, and decide the length and duration of
their next movement. As the length and duration are computed by
probability distributions, it indicates that they are able to escape
from local optimal solutions and find the global optimal value. BCC
is proposed based on BC, which adds communication features to
the basic algorithm. BCC performs better on convergence ability
and computation speed than BC. As it is different in the realiza-
tion principle from other traditional algorithms, and is promising
in multi-objective optimize problems, we study and make some
improvements on its performance in this paper.

The main contributions of this paper are: proposing an improved
multi-objective BCC algorithm based on grid (GMOBCC) to improve
the convergence performance and uniformity of solutions; ana-
lyzing the convergence properties of the multi-objective BCC
algorithm.

In this paper, three main modifications are introduced to
improve the diversity and uniformity of nondominated solutions.
Firstly, the improved adaptive grid strategy is applied to main-
tain the diversity and uniformity of nondominated solutions in the
external archive. Secondly, the oriented mutation based on grid is
proposed to generate more nondominated solutions in the sparse
area of the current archive. Thirdly, the concept of adaptive archive
is introduced, whose capacity can change along with the searching
process. The last two methods are not only remedies to make up
the loss of nondominated solutions caused by adaptive grid, but
also efficient methods to generate more nondominated solutions
to provide a good basic to maintain the diversity and uniformity of
solutions.

To appraise its performance, the proposed algorithm is tested on
12 benchmark problems, and four different performance measures
are implemented to compare its properties with those of MOBCC,
NSGA-II [2], and MOEA/D [15].

This paper is organized as follows. Section 2 describes the
basic bacterial chemotaxis model. Section 3 presents the GMOBCC
algorithm. The convergence analysis of the multi-objective BCC
algorithm is proved in Section 4. In Section 5, GMOBCC is applied
on 12 testing functions and the results are compared with other
optimization algorithms. Conclusions and some possible paths for
future research are finally drawn in Section 6.

2. Multi-objective optimization problems and BCC
algorithm

2.1. The basic BCC algorithm

The chemotactical behavior of bacteria is modeled by making
the following assumptions according to Dahlquist et al. [16]. (1)
The path of a bacterium is a sequence of straight-line trajectories
joined by instantaneous turns, each trajectory being character-
ized by speed, direction, and duration. (2) All trajectories have the
same constant speed. (3) When a bacterium turns, its choice of a
new direction is governed by a probability distribution, which is
azimuthally symmetric about the previous direction. (4) The angle
between two successive trajectories is governed by a probability

Fig. 1. 2-D path of a bacterium.

distribution. (5) The duration of a trajectory is governed by an
exponentially decaying probability distribution. (6) The probability
distributions for both the angle and the duration are independent
of parameters of the previous trajectory (Fig. 1).

The 2-D model of the basic multi-objective BCC algorithm is
presented as follows:

(1) Compute the velocity. The velocity is a constant value.

v = const (1)

(2) Compute the duration �. It is a random variable governed by an
exponential probability density function.

P(X = �) = 1
T

�−�/T (2)

where the expectation � = E(X) = T and the variance
�2 = Var (X) = T2.

The value T is given by

T =

{
T0 if (�xpre � �xcur )|(�xpre∼�xcur )

T0

(
1 + b × min

(∣∣∣ fpr1

lpr

∣∣∣ ,

∣∣∣ fpr2

lpr

∣∣∣)) if �xpre ≺ �xcur

(3)

where T0 is the minimal mean time, T0 = ε0.03 · 10−1.73; fpr is the
difference between the actual and the previous function value;
lpr = xpr, where xpr is the vector connecting the previous and the
actual position in the parameter space; b is the dimensionless
parameter, b = T0 · (T−1.54

0 · 100.6).
(3) Compute the new direction. The probability density distribu-

tion of the angle  ̨ between the previous and the new direction
is Gaussian and reads, for turning right or left, respectively:

P(X = ˛, v = �) = 1√
2��

exp
[
−  ̨ − v

2�2

]
(4)

P(X = ˛, v = −�) = 1√
2��

exp
[
−˛  − v

2�2

]
(5)

where  ̨ ∈ [0◦, 180◦] and the expectation value � and the vari-
ance � are determined by the formulation:

(�, �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
� = 62◦

� = 26◦

)
, if (fpre � fcur )|(fpre∼fcur )

(
� = 62◦(1 − cos(�))

� = 26◦(1 − cos(�))

)
, if fpre � fcur

(6)

with:

cos(�) = e−�C �Pr (7)

where �C is the correlation time, �C = (b/T0)0.31 · 101.16, and �Pr

the duration of the previous step.
(4) Compute the new location �xnew1.

�xnew1 = �xpre + v · � (8)

(5) Compute the nondominated center. As bacteria do share infor-
mation among each other [15], its movement will be affected
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