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Given a pattern w and a text t, the speed of a pattern matching algorithm over t with 
regard to w , is the ratio of the length of t to the number of text accesses performed 
to search w into t. We first propose a general method for computing the limit of the 
expected speed of pattern matching algorithms, with regard to w , over iid texts. Next, we 
show how to determine the greatest speed which can be achieved among a large class 
of algorithms, altogether with an algorithm running this speed. Since the complexity of 
this determination makes it impossible to deal with patterns of length greater than 4, we 
propose a polynomial heuristic. Finally, our approaches are compared with 9 pre-existing 
pattern matching algorithms from both a theoretical and a practical point of view, i.e. both 
in terms of limit expected speed on iid texts, and in terms of observed average speed on 
real data. In all cases, the pre-existing algorithms are outperformed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We focus on algorithms solving the online string matching problem, which consists in reporting all, and only the oc-
currence positions of a pattern w in a text t (online meaning that no pre-processing of the text is allowed). As one of the 
oldest problems addressed in computer science, it has been extensively studied. We refer to [10] for a comprehensive list 
and an evaluation of all the pattern matching algorithms developed so far. By the authors’ count, more than 80 algorithms 
have already been proposed, among which more than a half were published during the last ten years. This fact sounds quite 
paradoxical, since the Morris–Pratt algorithm, which is optimal in terms of worst case analysis, dates back to 1970.

A possible explanation is that there is wide gap between the worst case complexity of algorithms and their computation 
times on real data. For instance, there are pattern matching algorithms with non-linear worst case complexities, which 
perform much better than Morris–Pratt on English texts. Basically, the average case analysis is way more suited to assess 
the relevance of a pattern matching algorithm from a practical point of view. The average case analysis of some pattern 
matching algorithms, notably Boyer–Moore–Horspool and Knuth–Morris–Pratt, has already been carried out from various 
points of view [27,12,4,3,16,21,22,25]. We provide here a general method for studying the limit average behavior of a pattern 
algorithm over iid texts. More precisely, following [18], we consider the limit expectation of the ratio of the text length to 
the number of text accesses performed by an algorithm for searching a pattern w in iid texts. This limit expectation is 
called the asymptotic speed of the algorithm with regard to w under the iid model. The computation of the asymptotic 
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speed is based on w-matching machines which are automata-like structures able to simulate the behavior of a pattern 
matching algorithm while searching the pattern w . The underlying idea is the same as in [18–20,17] and can be seen as a 
generalization of the string matching automaton [7].

In the companion paper, G. Didier provided a theoretical analysis of the asymptotic speed of pattern matching algorithms 
over iid texts [8]. In particular, he showed that, for a given pattern w , the greatest asymptotic speed among a large class of 
pattern matching algorithms, is achieved by a w-matching machine in which the states are essentially subsets of positions 
of w . Such machines are called strategies below.

We provide here a brute force algorithm computing the Fastest strategy for a given pattern w and the frequencies of an 
iid model. The algorithm is based on an original structure associated to the pattern w and called its position lattice, which 
gives a full representation of the overlap relations between the subsets of positions of w .

Since the brute force algorithm cannot be applied on patterns of length greater than 4, because of its (very high) time-
complexity, we propose a polynomial K -Heuristic, in which the polynomial order K may be chosen by the user.

The Fastest and K -Heuristic approaches are finally compared with 9 several pre-existing pattern matching algorithms:

• from a theoretical point of view, by computing their limit expected speeds with regard to various patterns and iid 
models,

• from a practical point of view, by computing their average speeds over two sources (an English text and a DNA se-
quence).

In both cases, the Fastest and K -Heuristic (with K large enough) approaches outperform the pre-existing algorithms.
The software and the data used to perform the tests are available at https :/ /github .com /gilles-didier /Matchines .git.
The rest of the paper is organized as follows. Section 2 presents the notations and recalls some concepts and results 

from [8]. It is followed by two sections which introduce the central objects of this work: the strategies and the position 
lattice of a pattern. In particular, we provide an algorithm computing the position lattice of a given pattern. Section 5 shows 
how to use the position lattice of a pattern to obtain the Fastest strategy with regard to this pattern and an iid model. In 
Section 6, we provide a polynomial heuristic allowing to compute fast strategies. Section 7 presents the results of various 
comparisons between 9 pre-existing pattern matching algorithms, the K -Heuristic and, each time it is possible, the Fastest 
strategy. The results are discussed in the last section.

2. Notations and definitions

2.1. Notations and general definition

For all finite sets S , P(S) is the power set of S and |S| is its cardinal. An alphabet is a finite set A of elements called 
letters or symbols.

A word, a text or a pattern on A is a finite sequence of symbols of A. We put |v| for the length of a word v . Words 
are indexed from 0, i.e. v = v0 v1 . . . v |v|−1. We write v[i, j] for the subword of v starting at its position i and ending at its 
position j, i.e. v[i, j] = vi vi+1 . . . v j . The concatenate of two words u and v is the word uv = u0u1 . . . u|u|−1 v0 v1 . . . v |v|−1.

For any length n ≥ 0, we note An the set of words of length n on A, and A� , the set of finite words on A, i.e. A� =⋃∞
n=0 An .
Unless otherwise specified, all the texts and patterns considered below are on a fixed alphabet A.
A pattern matching algorithm takes a pattern w and a text t as inputs an reports all, and only the occurrence positions 

of w in t . For all patterns w , we say that two pattern matching algorithms are w-equivalent if, for all texts t , they access 
exactly the same positions of t on the input (w, t).

2.2. Matching machines and the generic algorithm [8]

For all patterns w , a w-matching machine is 6-uple (Q , o, F , α, δ, γ ) where

• Q is a finite set of states,
• o ∈ Q is the initial state,
• F ⊂ Q is the subset of pre-match states,
• α : Q → N is the next-position-to-check function, which is such that for all q ∈ F , α(q) < |w|,
• δ : Q ×A → Q is the transition state function,
• γ : Q ×A →N is the shift function.

By convention, the set of states of a matching machine always contains a sink state �, which is such that, for all symbols 
x ∈A, δ(�, x) = � and γ (�, x) = 0.

The order O � of a matching machine � = (Q , o, F , α, δ, γ ) is defined as O � = maxq∈Q {α(q)}.
The w-matching machines carry the same information as the Deterministic Arithmetic Automatons defined in [19,20].
The generic algorithm takes a w-matching machine and a text t as inputs and outputs positions of t (Algorithm 1).

https://github.com/gilles-didier/Matchines.git
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