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We present a logspace algorithm that constructs a canonical intersection model for a given 
proper circular-arc graph, where canonical means that isomorphic graphs receive identical 
models. This implies that the recognition and the isomorphism problems for these graphs 
are solvable in logspace. For the broader class of concave-round graphs, which still possess 
(not necessarily proper) circular-arc models, we show that a canonical circular-arc model 
can also be constructed in logspace. As a building block for these results, we design a 
logspace algorithm for computing canonical circular-arc models of circular-arc hypergraphs. 
This class of hypergraphs corresponds to matrices with the circular ones property, which 
play an important role in computational genomics. Our results imply that there is a 
logspace algorithm that decides whether a given matrix has this property.
Furthermore, we consider the Star System Problem that consists in reconstructing a graph 
from its closed neighborhood hypergraph. We show that this problem is solvable in 
logarithmic space for the classes of proper circular-arc, concave-round, and co-convex 
graphs.
Note that solving a problem in logspace implies that it is solvable by a parallel algorithm of 
the class AC1. For the problems under consideration, at most AC2 algorithms were known 
earlier.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With a family of sets H we associate the intersection graph I(H) on vertex set H where two sets A, B ∈H are adjacent if 
and only if they have a nonempty intersection. We call H an intersection model of a graph G if G is isomorphic to I(H). Any 
isomorphism from G to I(H) is called a representation of G by an intersection model. If H consists of intervals (resp. arcs 
of a circle), it is also referred to as an interval model (resp. an arc model). An intersection model H is proper if the sets in H
are pairwise incomparable by inclusion. G is called a (proper) interval graph if there is a (proper) interval model of G . The 
classes of circular-arc and proper circular-arc graphs are defined similarly. Throughout the paper we will use the shorthands 
CA and PCA, respectively.
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We design a logspace algorithm that for a given PCA graph computes a canonical representation by a proper arc model, 
where canonical means that isomorphic graphs receive identical models. Note that this algorithm provides a simultaneous 
solution in logspace of both the recognition and the isomorphism problems for the class of PCA graphs.

In [21], along with Bastian Laubner we gave a logspace solution for the canonical representation problem of proper 
interval graphs. Though PCA graphs may at first glance appear close relatives of proper interval graphs, the extension of 
the result of [21] achieved here is far from being straightforward. Combinatorial differences between these two classes of 
graphs are well known, and they are responsible for the fact that algorithms for PCA graphs often need new ideas and are 
much more involved than the algorithms for the same problems on proper interval graphs; cf. [8,10,11,15,20,27,28,30,35]. 
One combinatorial difference, very important in our context, lies in the relationship of these graph classes to interval and 
circular-arc hypergraphs that we will explain shortly.

An interval hypergraph is a hypergraph isomorphic to a system of intervals of integers. A circular-arc (CA) hypergraph is 
defined similarly if, instead of integer intervals, we consider arcs in a discrete circle. With any graph G , we associate its 
closed neighborhood hypergraph N [G] = {N[v]}v∈V (G) on the vertex set of G , where for each vertex v we have the hyper-
edge N[v] consisting of v and all the vertices adjacent to v . Roberts [33] discovered that G is a proper interval graph 
if and only if N [G] is an interval hypergraph. The circular-arc world is more complex. While N [G] is a CA hypergraph 
whenever G is a PCA graph, the converse is not always true. PCA graphs are properly contained in the class of those graphs 
whose neighborhood hypergraphs are CA. Graphs with this property are called concave-round by Bang-Jensen, Huang, and 
Yeo [3] and Tucker graphs by Chen [7]. The latter name is justified by Tucker’s result [38] saying that all these graphs are CA 
(although not necessarily proper CA). Hence, it is natural to consider the problem of constructing arc representations for 
concave-round graphs. We solve this problem in logspace and also in a canonical way.

Our working tool is a logspace algorithm for computing canonical representations of CA hypergraphs. This algorithm can 
also be used to test in logspace whether a given Boolean matrix has the circular ones property, that is, whether the columns 
can be permuted so that the 1-entries in each row form a segment up to a cyclic shift. Note that a matrix has this property 
if and only if it is the incidence matrix of a CA hypergraph. The recognition problem of the circular ones property arises in 
computational biology, namely in analysis of circular genomes [14,31].

Our techniques are also applicable to the Star System Problem where, for a given hypergraph H, we have to find a graph G
such that H = N [G], if such a graph exists. In the restriction of the problem to a class of graphs C, we seek for G only 
in C. We give logspace algorithms solving the Star System Problem for PCA and for concave-round graphs.

1.1. Comparison with previous work

Recognition, model construction, and isomorphism testing. The recognition problem for PCA graphs, along with model con-
struction, was solved in linear time by Deng, Hell, and Huang [11], by Kaplan and Nussbaum [20], and by Soulignac [36]; 
and in AC2 by Chen [8]. Note that linear-time and logspace results are in general incomparable, while the existence of a 
logspace algorithm for a problem implies that it is solvable in AC1. The isomorphism problem for PCA graphs was solved in 
linear time by Lin, Soulignac, and Szwarcfiter [27]; their algorithm computes canonical representations. Curtis et al. give a 
linear time isomorphism test for the larger class of concave-round graphs [10].

Chen [7] showed that the isomorphism problem for concave-round graphs is in AC2. Circular-arc models for concave-
round graphs were known to be constructible also in AC2 (Chen [6]).

Extending these upper bounds to the class of all CA graphs remains a challenging problem. While this class can be 
recognized in linear time by McConnell’s algorithm [30] (along with constructing an intersection model), no polynomial-time 
isomorphism test for CA graphs is currently known (see the discussion in [10], where a counterexample to the correctness 
of Hsu’s algorithm [16] is given). This provides further evidence that CA graphs are algorithmically harder than interval 
graphs. For the latter class we have linear-time algorithms for recognition [4] and canonical representation [29] due to the 
seminal work by Booth and Lueker; logspace algorithms for these tasks are designed in [21].

The aforementioned circular ones property and the related consecutive ones property (requiring that the columns can be 
permuted so that the 1-entries in each row form a segment) were studied in [4,17,18], where linear-time algorithms are 
given; parallel AC2 algorithms were suggested in [9,2].

Star System Problem. The decision version of the Star System Problem for general graphs is NP-complete (Lalonde [25]). It 
stays NP-complete if restricted to non-co-bipartite graphs (Aigner and Triesch [1]) or to H-free graphs for H being a cycle 
or a path on at least 5 vertices (Fomin et al. [13]). The restriction to co-bipartite graphs has the same complexity as the 
general graph isomorphism problem [1]. Polynomial-time algorithms are known for H-free graphs for H being a cycle or a 
path on at most 4 vertices [13] and for bipartite graphs (Boros et al. [5]). An analysis of the algorithms in [13] for C3- and 
C4-free graphs shows that the Star System Problem for these classes is solvable even in logspace, and the same holds true 
for the class of bipartite graphs; see [22]. Moreover, the problem is solvable in logspace for any logspace-recognizable class 
of C4-free graphs, in particular, for chordal, interval, and proper interval graphs; see [22].

2. Basic definitions

We use the standard graph-theoretic terminology as, e.g., in [12]. The vertex set of a graph G is denoted by V (G). The 
complement of a graph G is the graph G with V (G) = V (G) such that two vertices are adjacent in G if and only if they are 
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