
J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S 3 (2 0 1 6) 1 3 0 – 1 4 0

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/jides

Wavelet decomposition of software entropy reveals
symptoms of malicious code
Michael Wojnowicz∗, Glenn Chisholm, Matt Wolff, Xuan Zhao

Cylance, Inc., 18201 Von Karman Ave., Irvine, CA 92612, United States

H I G H L I G H T S

• Development of new features for machine learning.

• Application of wavelet transforms to software entropy.

• Discovery of suspicious patterns of entropic change.

• Automatic classification of parasitic malware.

A R T I C L E I N F O

Article history:

Received 21 July 2016

Accepted 31 October 2016

Published online 5 December 2016

Keywords:

Wavelet decomposition

Structural entropy

Malware detection

Parasitic malware

Machine learning

A B S T R A C T

Sophisticated malware authors can sneak hidden malicious contents into portable exe-

cutable files, and this contents can be hard to detect, especially if encrypted or compressed.

However, when an executable file switches between contents regimes (e.g., native, en-

crypted, compressed, text, and padding), there are corresponding shifts in the file’s repre-

sentation as an entropy signal. In this paper, we develop amethod for automatically quanti-

fying the extent to which patterned variations in a file’s entropy signal make it “suspicious”.

In Experiment 1, we use wavelet transforms to define a Suspiciously Structured Entropic

Change Score (SSECS), a scalar feature that quantifies the suspiciousness of a file based on

its distribution of entropic energy across multiple levels of spatial resolution. Based on this

single feature, it was possible to raise predictive accuracy on a malware detection task from

50.0% to 68.7%, even though the single feature was applied to a heterogeneous corpus of

malware discovered “in the wild”. In Experiment 2, we describe how wavelet-based decom-

positions of software entropy can be applied to a parasitic malware detection task involv-

ing large numbers of samples and features. By extracting only string and entropy features

(with wavelet decompositions) from software samples, we are able to obtain almost 99%

detection of parasitic malware with fewer than 1% false positives on good files. Moreover,

the addition of wavelet-based features uniformly improved detection performance across

plausible false positive rates, both in a strings-only model (e.g., from 80.90% to 82.97%) and

a strings-plus-entropy model (e.g. from 92.10% to 94.74%, and from 98.63% to 98.90%). Over-

all, wavelet decomposition of software entropy can be useful for machine learning models

for detecting malware based on extracting millions of features from executable files.
c⃝ 2016 Qassim University. Production and Hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Qassim University.
∗ Corresponding author.
E-mail address: mwojnowicz@cylance.com (M. Wojnowicz).

http://dx.doi.org/10.1016/j.jides.2016.10.009
2352-6645/ c⃝ 2016 Qassim University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.jides.2016.10.009
http://www.elsevier.com/locate/jides
http://www.elsevier.com/locate/jides
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jides.2016.10.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mwojnowicz@cylance.com
http://dx.doi.org/10.1016/j.jides.2016.10.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S 3 (2 0 1 6) 1 3 0 – 1 4 0 131

1. Introduction

1.1. The entropy of malicious software

A fundamental goal in the information security industry is
malware detection. In this paper, we focus our malware de-
tection efforts on the fact that malicious files (e.g. parasitics,
or exploits with injected shellcode) commonly contain en-
crypted or compressed (“packed”) segments which conceal
malicious contents [1]. Thus, the information security indus-
try has been interested in developing methodologies which
can automatically detect the presence of encrypted or com-
pressed segments hidden within portable executable files. To
this end, entropy analysis has been used, because files with
high entropy are relatively likely to have encrypted or com-
pressed sections inside them [2]. In general, the entropy of a
random variable reflects the amount of uncertainty (or lack
of knowledge) about that variable. In the context of software
analysis, zero entropy would mean that the same character
was repeated over and over (as might occur in a “padded”
chunk of code), and maximum entropy would mean that a
chunk consisted of entirely distinct values. Thus, chunks of
code that have been compressed or encrypted tend to have
higher entropy than native code. For instance, in the soft-
ware corpus studied by [2], plain text had an average entropy
of 4.34, native executables had an average entropy of 5.09,
packed executables had an average entropy of 6.80, and en-
crypted executables had an average entropy of 7.17.

1.2. Suspiciously structured entropy

Based on the reasoning above, previous research has
used high mean entropy as an indicator of encryption or
compression. However, malicious contents, when concealed
in a sophisticated manner, may not be detectable through
simple entropy statistics, such as mean file entropy. Malware
writers sometimes try to conceal hidden encrypted or
compressed contents that they introduce in creating files
such as parasitic malware; for instance, they may add
additional padding (zero entropy chunks), so that the file
passes through high entropy filters. However, files with
concealed encrypted or compressed segments tend to
vacillate markedly between native contents, encrypted and
compressed segments, and padding, with each segment
having distinct and characteristic expected entropy levels.
Thus, the field of cybersecurity has started to pay attention
to files with highly structured entropy [3,4], that is, files
whose contents flips between various distinguishing levels of
entropy through the file.

In order to automatically identify the degree of entropic
structure within a piece of software, we represent each
portable executable file as an “entropy stream.” The entropy
stream describes the amount of entropy over a small snippet
of code in a certain location of the file. The “amount” of
entropic structure can then be quantified, such that we can
differentiate, for example, between a low-structured signal
with a single local mean and variation around that mean,
versus a highly-structured signal whose local mean changes
many times over the course of the file.

In this paper,1 we define suspiciously structured entropy as
a particular pattern of entropic structure which matches those
of malicious files. To quantify the suspiciousness of the
structured entropy within a piece of software, we develop
the notion of a “Suspiciously Structured Entropic Change
Score” (SSECS). We first describe how to calculate SSECS as
a single predictive feature, and analyze its performance in
malware detection. We then generalize this feature to large-
scale malware detection tasks. The derivation of the SSECS
feature depends upon the notion of a wavelet transform,
which we now briefly review.

1.3. Brief overview of wavelets

TheWavelet Transform is the primary mathematical operator
underlying our quantification of structurally suspicious
entropy. The Wavelet Transform extracts the amount of
“detail” exhibited within a signal at various locations over
various levels of resolution [7]. In essence, it transforms
a one-dimensional function of “location” (in our case, file
location) into a two-dimensional function of “location” and
“scale.” By using the output of the wavelet transform (the so-
called “wavelet coefficients”), it is possible to obtain a series
of coarse-to-fine approximations of an original function.
These successive approximations allow us to determine the
multi-scale structure of the entropy signal, in particular the
“energy” available at different levels of resolution.

For this paper, we apply Haar Wavelets, which is a
particularly simple family of wavelets whose members are
piecewise constant. The Haar Wavelet Transform projects the
original entropy signal onto a collection of piecewise constant
functions which oscillates as a square wave over bounded
support (i.e., these functions assume non-zero values only
on certain bounded intervals). Since these piecewise constant
functions have supports which vary in their scale (width) and
location, the resulting projections describe the “detail” within
the signal at various locations and resolutions.

More specifically, the Haar Wavelet Transform is based
upon the so called “mother function”, ψ(t), defined by:

ψ(t) =

1, t ∈ [0,1/2)
−1, t ∈ [1/2,1)
0, otherwise

a very simple step function. Given the Haar mother function
ψ(t), a collection of dyadically scaled and translated wavelet
functions ψj,k(t) are formed by:

ψj,k(t) = 2j/2ψ(2jt − k) (1)

where the integers j, k are scaling parameters. The dilation
parameter j indexes the level of detail or spatial resolution,
and the translation parameter k selects a certain location
within the signal to be analyzed. Note that as the scaling
parameter j increases, the function ψj,k applies to (is non-zero
over) successively finer intervals of the signal. Some example
Haar wavelet functions are shown in Fig. 1.

1 This paper is a development of earlier research originally
published in conference proceedings [5]. For an even more
comprehensive viewpoint, see [6].

Download English Version:

https://daneshyari.com/en/article/4951349

Download Persian Version:

https://daneshyari.com/article/4951349

Daneshyari.com

https://daneshyari.com/en/article/4951349
https://daneshyari.com/article/4951349
https://daneshyari.com

