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a  b  s  t  r  a  c  t

In the  design  of  predictive  controllers  (MPC),  parameterisation  of degrees  of  freedom  by  Laguerre  func-
tions,  has  shown  to  improve  the  controller  performance  and  feasible  region.  However,  an  open  question
remains:  how  to select  the  optimal  tuning  parameters?  Moreover,  optimality  will  depend  on the  size of
the  feasible  region  of the  controller,  the  system’s  closed-loop  performance  and  the  online  computational
cost  of  the  algorithm.  This  paper develops  a method  for a systematic  selection  of tuning  parameters  for
a  parameterised  predictive  control  algorithm.  In  order to  do this,  a multiobjective  problem  is  posed  and
then  solved  using  a multiobjective  evolutionary  algorithm  (MOEA)  given  that  the objectives  are  in con-
flict.  Numerical  simulations  show  that  the MOEA  is a useful  tool  to obtain  a  suitable  balance  between
feasibility,  performance  and  computational  cost.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Model based predictive control (MPC) is the general name for
different computer control algorithms that use past information
of the inputs and outputs and a mathematical model of the plant
to optimise the predicted future behavior [27,5,33]. MPC  is well
established and widely used, but there are still some theoretical
and practical problems without a satisfactory answer. For instance,
one key conflict is between feasibility, performance and online
computational cost. A controller that is well tuned to give high per-
formance will often have a relatively small feasible region unless
a large number of decision variables (or degrees of freedom, d.o.f.)
are used, which produces an increase of the online computational
load of the algorithm. Conversely, with a strategy that focuses on
producing a large feasibility region, the result will be a detuned
controller with relatively poor performance [37].

This issue becomes particularly important when one tries to
implement MPC  on special purpose hardware, such as FPGA’s
[21,28], PLC’s [32,19,45] or PAC’s [18]. For these devices, linear MPC
is demanding, as they have limited memory space and very low
processing power. In this cases, even a small improvement could be
the difference for a successful implementation; for example, Huyck
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et al. [18] analyses the maximum number of flops and memory
space for a particular PLC and the conclusion is that (linear) MPC
implementation is not always possible due to the computational
cost and memory space needed. In contrast, in Rauová et al. [32]
a very limited linear MPC  is successfully embedded on a PLC with
just 1024 bytes of memory space. Therefore, idea here is to find a
suitable balance on the different performance indexes in order to
contribute to the solution of this problem.

Several authors have proposed different strategies to implement
the MPC  algorithm and solve this problem; such as multiparame-
tric solutions [3], time-varying control laws [26], fast optimisations
[47], interpolations of different control laws [35,34], move-blocking
[4,15], among others. Nevertheless, this paper will focus on algo-
rithms with parameterised d.o.f. where the main idea is to form the
degrees of freedom in the predictions as a combination of either
Laguerre/Kautz polynomials or through generalised orthonormal
functions [37,23,22], since they have proven to be very effective at
improving the volume of the feasible region with a limited num-
ber of d.o.f. with almost no performance loss. The effectiveness of
these approaches, is such that, there are successful experimental
results on industrial hardware with limited memory and very low
processing power [43].

Traditionally, conventional MPC  controllers have been tuned by
trial and error simulations or using thumb rules for the selection of
some parameters, see for example the reviews by Rani and Unbe-
hauen [31] and Garriga and Soroush [12]. In the case of automatic
tuning, it is common to use some type of simplification [40,1,42]
or excluding some particular aspects of the problem; for instance,
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not considering the horizons [25]. Other authors have been tuning
MPC  by solving different optimisation problems for specific types of
MPC; interesting examples include: using particle swarm optimi-
sation [16,41], fuzzy decision making [46], minimising dynamical
indexes as performance measures [11], among others.

The original papers, proposing parameterisation of the d.o.f. for
MPC algorithms, introduce one or more tuning parameters with-
out guidelines for their selection [37,23,22]. The addition of these
parameters make the tuning even more challenging. The tuning
task can be particularly difficult since the whole set represents a
large array of possible combinations and because many of these
parameters have overlapping and/or contrary effects on the closed-
loop performance and stability. In this case, the advantage of using
an offline multiobjective optimisation tuning method is clear.

On the other hand, the use of evolutionary algorithms (EA) is
becoming more accepted in the control community, since they offer
a flexible representation of the decision variables, which facilitates
the evaluation of controller performance [9,20]. Some applica-
tions include the solution of constrained combinatorial problems
[30] and fuzzy multiobjective bi-level programming problems
[8], performance optimisation of electrical systems [48], and the
parameter selection of intelligent controllers [29], among others.
Therefore, the main contribution of this paper is to propose a pro-
cedure to systematise the selection of controller tuning parameters
of a MPC  algorithm whose d.o.f.s have been parameterised using
Laguerre functions. To select the controller parameters a multiob-
jective optimisation problem is formulated and solved using the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) as this EA
offers a simple strategy for handling constraints in addition to being
easy to adapt into design. Similar experiments of those presented
in Khan et al. [23], Valencia-Palomo et al. [44], Rossiter et al. [37] are
revised. The results demonstrate that EA is a useful tool to obtain
a suitable balance between feasibility, performance and computa-
tional cost.

This paper is organised as follows: Section 2 gives the neces-
sary background about predictive control and Laguerre optimal
predictive control (LOMPC); Section 3 presents the evolutionary
algorithm used to solve the multiobjective optimisation problem;
Section 4 formulates the multiobjective optimisation problem; Sec-
tion 5 shows numerical examples; and finally Section 6 presents the
conclusions.

2. Predictive control and Laguerre functions

This section introduces the assumptions used in this paper and
background information.

2.1. Model and constraints

Assume a state-space model of the form:

xk+1 = Axk + Buk;

yk = Cxk + Duk;
(1)

with xk ∈ Rn, yk ∈ Rl , uk ∈ Rm; which are the state vectors, the mea-
sured output and the plant input respectively. This work also adopts
an independent model approach with optimal feedback K. Let wk
the output of the independent model, hence, the estimated disturb-
ance is d̂k = yk − wk. Disturbance rejection and offset free tracking
will be achieved using the offset form of state feedback that is:

uk − uss = −K(xk − xss), (2)

where xk is the state of the independent model and xss, are esti-
mated values of the steady-states giving no offset; these depend
upon the model parameters and the disturbance estimate.

Associated to the model are constraints of the form

umin ≤ uk ≤ umax;

�umin ≤ uk+1 − uk ≤ �umax;

ymin ≤ yk ≤ ymax.

⎫⎪⎬
⎪⎭∀k. (3)

In the context of predictive control, it is common to take the
following quadratic performance index as the objective to be mini-
mised at each sample:

J =
∞∑

i=0

{
(xk+i − xss)

T Q(xk+i − xss) + (uk+i − uss)
T R(uk+i − uss)

}
,

(4)

with Q ∈ Rn×n and R ∈ Rm×m positive definite state and input cost
weighting matrices.

2.2. Optimal predictive control (OMPC)

The key idea of optimal MPC  (OMPC) [39,36] is to embed into
the predictions the unconstrained optimal behaviour and handle
constraints by using perturbations about this. Hence, assuming K
is the feedback, the input predictions are defined as follows:

uk+i − uss =
{

−K(xk+i − xss) + ck+i; i  ∈ {0, . . .,  nc − 1}
−K(xk+i − xss); i ∈ {nc, nc + 1, . . .}

, (5)

where the perturbations ck are the d.o.f. for optimisation; conve-
niently summarised in vector: c

→k
= [cT

k
, cT

k+1, . . .,  cT
k+nc−1]

T
.

It is known that for suitable M,  N, d (e.g. [36]), the input pre-
dictions (5) and associated state predictions for model (1) satisfy
constraints (3) if:

Mxk + N c
→k

≤ d(k). (6)

It is easy to show [36] that optimisation of (4) over input pre-
dictions (5) is equivalent to minimising J =

−→
cT

k
W c

→k
(W = BT�B  + R,

� − �T�� = Q + KTRK,  � = A − BK)  and thus, in the absence of
constraints, the optimum is

−→
c∗

k
. Where the unconstrained predic-

tions would violate constraints, non-zero
−→
c∗

k
would be required to

ensure constraint satisfaction.

Algorithm 1 (OMPC). The OMPC algorithm is summarised as
Scokaert and Rawlings [39,36]:

−→
c∗

k
= argmin

c
→k

−→
cT

k
W c

→k

s.t. Mxk + N c
→k

≤ d(k)
(7)

Use the first element of
−→
c∗

k
in the control law of (5), with K.

This algorithm will find the global optimal, with respect
to (4), whenever that is feasible and has guaranteed conver-
gence/recursive feasibility in the nominal case.

OMPC algorithm has implied linear-quadratic-regulator (LQR)
theory and is able to find a global optimum on the objective func-
tion. If one chooses a value for K in (5) to become a optimal LQR
[39], the feasible region depends only on the class of prediction,
and hence also the number of free movements, that is, nc.

Definition 2.1 (Maximum admissible set (MAS)).  A common
method to achieve recursive feasibility is to find the region of the
state space where positively invariant sets ensure the action of an
unconstraint control law but satisfy all constraints in the future.
The greatest invariant set possible for use as the terminal state
set is referred as maximum admissible set (MAS) [14]. For a lin-
ear discrete system, observable, pre-stabilised by a gain K of state
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