
JID:JLAMP AID:179 /FLA [m3G; v1.218; Prn:7/06/2017; 13:06] P.1 (1-27)

Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Modelling and analysis of normative documents

John J. Camilleri ∗, Gerardo Schneider

Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 February 2016
Received in revised form 3 May 2017
Accepted 4 May 2017
Available online xxxx

Keywords:
Normative documents
Contract analysis
Timed automata
Uppaal

We are interested in using formal methods to analyse normative documents or contracts
such as terms of use, privacy policies, and service agreements. We begin by modelling 
such documents in terms of obligations, permissions and prohibitions of agents over 
actions, restricted by timing constraints and including potential penalties resulting from 
the non-fulfilment of clauses. This is done using the C-O Diagram formalism, which we 
have extended syntactically and for which we have defined a new trace semantics. Models 
in this formalism can then be translated into networks of timed automata, and we have 
a complete working implementation of this translation. The network of automata is used 
as a specification of a normative document, making it amenable to verification against 
given properties. By applying this approach to a case study from a real-world contract, we 
show the kinds of analysis possible through both syntactic querying on the structure of the 
model, as well as verification of properties using Uppaal.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We frequently encounter normative documents (or contracts) when subscribing to internet services and using software. 
These come in the forms of terms of use, privacy policies, and service-level agreements, and we often accept these kinds of 
contractual agreements without really reading them. Though they are written using natural language, understanding the de-
tails of such documents often requires legal experts, and ambiguities in their interpretation are commonly disputed. Our goal 
is to model such texts formally in order to enable automatic querying and analysis of contracts, aimed at benefitting both au-
thors of contracts and their users. To realise this, we are developing an end-to-end framework for the analysis of normative 
documents, combining natural language technology with formal methods. An outline of this framework is shown in Fig. 1.

Formal analysis requires a formal language: a given syntax together with a well-defined semantics and a state-space 
exploration technique. Well-known generic formalisms such as first-order logic or temporal logic would not provide the 
right level of abstraction for a domain-specific task such as modelling normative texts. Instead, we choose to do this with 
a custom formalism based on the deontic modalities of obligation, permission and prohibition, and containing only the 
operators that are relevant to our domain. Specifically, we use the Contract-Oriented (C-O) Diagram formalism [1], which 
provides both a logical language and a visual representation for modelling normative texts. This formalisation allows us to 
perform syntactic analysis of the models using predicate-based queries. Additionally, we are able to translate models in this 
formalism into networks of timed automata (NTA) [2] which are amenable to model checking techniques, providing further 
possibilities for analysis.

* Corresponding author.
E-mail addresses: john.j.camilleri@cse.gu.se (J.J. Camilleri), gerardo@cse.gu.se (G. Schneider).

http://dx.doi.org/10.1016/j.jlamp.2017.05.002
2352-2208/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2017.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:john.j.camilleri@cse.gu.se
mailto:gerardo@cse.gu.se
http://dx.doi.org/10.1016/j.jlamp.2017.05.002


JID:JLAMP AID:179 /FLA [m3G; v1.218; Prn:7/06/2017; 13:06] P.2 (1-27)

2 J.J. Camilleri, G. Schneider / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

Fig. 1. Overview of our contract processing framework, separating the front-end concerns of model-building from the back-end tasks related to analysis. 
Dashed arrows represent manual interaction, while solid ones represent automatic steps.

Table 1
Legend of symbols and functions used. Where relevant, we have also included references to their definitions.

N set of names
A set of agents
� set of actions
V set of integer variables
C set of clocks
B set of Boolean flags
N type of natural numbers
Z type of integers
T type of time stamps
σ event trace
T set of event traces
σU Uppaal timed trace
TU set of timed traces
T C

U set of timed traces corresponding to the satisfaction of C
� respects relation between traces and contracts (Fig. 6)

φ, ψ predicate name placeholders
ε empty conditions
∅ empty guard/constraint list
ε empty bound in interval
� environment
getv/c/b getters (17), (18), (19)
setv/b setters (20), (21)
resetc reset clock (22)
lookup lookup clause by name (23)
τ combine interval with constraints (24)
lst find lowest satisfying time stamp (28)
check check a set of constraints (26)
eval evaluate a constraint (27)
trf translate from C-O Diagram to Uppaal model (Section 3)
abstr translate from timed trace to event trace
Q syntactic query function (53)

Building such models from natural language texts is a non-trivial task which can benefit greatly from the right tool 
support. In previous work [3] we presented front-end user applications for working with C-O Diagram models both as 
graphical objects and through a controlled natural language (CNL) interface (shown on the left-hand side of Fig. 1). The 
ability to work with models in different higher-level representations makes the formalism more attractive for real-world 
use when compared to other purely logical formalisms. The present work is concerned with the back-end of this system, 
focusing on the details of the modelling language and the different kinds of analysis that can be performed on these models.

Contributions and outline The paper is layed out as follows. In Section 2 we first present an extended definition of the C-O 
Diagram formalism, introducing an updated syntax and a novel trace semantics. Section 3 then describes our own translation 
function from the extended C-O Diagram formalism into Uppaal timed automata, which is more modular and fixes a number 
of issues with respect to the previous translation given in [4]. Our contribution includes the first fully-working implemen-
tation of this translation, written in Haskell. We also prove the correctness of this translation function with respect to our 
trace semantics. Section 4 covers the analysis processes that we can perform on this formalism, discussing our methods for 
syntactic querying and semantic property checking of contract models. We demonstrate these methods by applying them 
to a case study from a real-world contract in Section 5. Finally, we conclude with a comparison of some related work in 
Section 6 and a final discussion in Section 7.

Notation Table 1 presents the symbols and function names used throughout the rest of this article.



Download	English	Version:

https://daneshyari.com/en/article/4951381

Download	Persian	Version:

https://daneshyari.com/article/4951381

Daneshyari.com

https://daneshyari.com/en/article/4951381
https://daneshyari.com/article/4951381
https://daneshyari.com/

