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a  b  s  t  r  a  c  t

Surface  phenomena  such  as  corrosion,  crystal  growth,  catalysis,  adsorption  and  oxidation  cannot  be ade-
quately comprehended  without  the  full  knowledge  of surface  energy  of  the concerned  material.  Despite
these  significances  of surface  energy,  they are  difficult  to obtain  experimentally  and  the  few available
ones  are  subjected  to certain  degree of  inaccuracies  due  to extrapolation  of  surface  tension  to  0  K. In order
to cater  for these  difficulties,  we  have  developed  a model  using  computational  intelligence  technique  on
the  platform  of  support  vector  regression  (SVR)  to establish  a  database  of surface  energies  of  hexagonal
close  packed  metals  (HCP).  The  SVR based-model  was  developed  through  training  and  testing  SVR  using
fourteen  experimental  data  of periodic  metals.  The  developed  model  shows  accuracy  of  99.08%  and  100%
during  training  and  testing  phase,  respectively,  using  test-set  cross  validation  technique.  The  developed
model  was  further  used  to obtain  surface  energies  of  HCP  metals.  The  surface  energies  obtained  from
SVR-based  model  are  closer  to  the experimental  values  than  the  results  of  the well-known  existing  the-
oretical models.  The  outstanding  performance  of  this  developed  model  in  estimating  surface  energies  of
HCP metals  with  high  degree  of  accuracy,  in the presence  of few experimental  data,  is a great  achieve-
ment  in  the  field of surface  science  because  of  its  potential  to circumvent  experimental  difficulties  in
determining  surface  energies  of materials.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Creation of a unit surface area of a material requires an energy
termed surface energy through which the stability of the surface is
established. Surface phenomena such as corrosion, crystal growth,
catalysis, adsorption and oxidation cannot be fully comprehended
without the knowledge of surface energy of the concerned surface
[1]. Limitation and difficulty of experimental techniques in deter-
mining surface energies of materials lead to daily development
and extension of theoretical methods through which they can be
easily estimated [2–9]. During the experimental determination of
surface energy of materials, the material is heated to its melting
phase so as to obtain surface tension of the concerned material. The
extrapolation of the value of surface tension obtained to 0 K gives
the surface energy of the specific material. Meanwhile, heating of
materials to their melting phase is very difficult especially those
that have high melting points, to crown it all, extrapolation of
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surface tension to 0 K subjects the experimental results to certain
degree of inaccuracy [6]. Though, existing theoretical models such
as embedded atomic method (EAM), equivalent crystal theory
(ECT) and analytical equivalent crystal theory (AECT) and many
others address this problem, many of them still have discrepancies
in their estimates when compared to experimental values [3,4].
However, the use of the developed SVR-based model eliminates
the issue of heating and extrapolation and gives excellent surface
energy estimates close to experimental values. This is due to the
ability of SVR to utilize the acquisition of complex relationship
between the descriptors and surface energy in its generalization
and prediction. Furthermore, the developed SVR-based model
performs excellently well in the presence of few number of
experimental data. First principle calculation of surface energy is
computationally intensive and demanding and is usually employed
for few elements [6]. Some semi-empirical methods are impressive
but estimate surface energy lower than what is obtainable from the
experimental data and first principle calculation [10–12]. Surface
energies obtained from the developed SVR-based model are in
excellent agreement with the generally accepted experimental
values. The ability of this approach to give accurate estimation
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of surface energies in the presence of few experimental data,
indicates its potential to circumvent the experimental difficulties
involve in determining surface energies of materials.

SVR is a tool in the field of machine learning in which unknown
targets are estimated through inference from pattern acquisition.
This computational intelligence technique has proved successful
in estimating many properties of materials [13–16]. It has been
proved as an excellent tool in estimating atomic radii of elements
[17] as well as compressive strength of concrete which helps in pre-
venting structural collapse. These achievements of SVR in several
fields of studies coupled with the need to circumvent the experi-
mental difficulties in estimating surface energies of materials, serve
as motivations for carrying out this research work.

Among the uniqueness of this research work is that it employs
a technique that accommodates few experimental data in making
excellent generalization. This is a great achievement in the field
of surface science where experimental data is limited. Our devel-
oped model generated pattern from fourteen experimental data of
body centered cubic (BCC) and face centered cubic (FCC) metals and
explore the acquired pattern to estimate more than twenty surface
energies of HCP metals with high degree of accuracy. This indicates
that the model estimates surface energy of materials irrespective
of the crystal structure of material used in building the model.
Although, there are established connections between HCP and FCC
metals (in terms of their crystal structures) which further enhance
the predictive and generalization ability of our proposed SVR-based
model. Both FCC and HCP crystal structures have closely packed
planes of atoms, coordination number of twelve and packing factor
of 0.74. The difference comes in their stacking sequence.

During the course of developing the model, our empirical results
through simulation indicate 99.08% accuracy for the trained model
on the basis of correlation coefficient and improved accuracy of
100% while validating the trained model. This shows the strength
of the adopted test-set-cross validation technique of optimization
among the pool of optimization algorithms found in literatures
[18–20]. The obtained high accuracy further enhances perfect esti-
mation of surface energies of HCP metals when their descriptors
are fed into the model.

The remaining part of this work is organized as follows. Section
2 contains brief description of some existing theoretical models, the
proposed machine learning technique (i.e. SVR), working principles
of the proposed model and the physical explanation of the cho-
sen descriptors. Section 3 explains empirical studies that include
dataset description, computational methodology and the employed
optimization strategy. Section 4 presents and discuses results while
Section 5 entails the conclusion and recommendation.

2. Brief description of the some existing theoretical models

Surface energy is generally referred to as the excess energy
at the surface of materials which helps one surface to adhere to
another. This excess energy comes from the difference in the energy
of the atoms at the surface and at the bulk region of the crys-
tal. Among the models that have been extensively deployed in
calculating properties of materials include broken-bond models
which approximate to the first-nearest–neighbor interaction and
can be further extended to second-nearest–neighbor interaction
when better accuracy is desired [21]. It estimates surface energy
of materials on the basis of the number of broken bonds [22]. The
number of broken-bonds at the surface of materials is known to
be proportional to surface energy and this makes closed-packed
surfaces to be more stable than open ones. This effect is mani-
fested in the equilibrium crystal shapes of metals with the exposure
of closed-packed surfaces at the expense of open ones. Relatively
perfect correlation exists between relative surface energies (of dif-
ferent crystal facets) and the number of broken bonds in many FCC

metals [23]. Meanwhile, recent review on theoretical models shows
that the models that are dominant in calculating surface energies
of metals include embedded atomic method (EAM) and equivalent
crystal theory (ECT) [5] which was  further extended to analytical
equivalent crystal theory (AECT) in order to cater for the major
challenge that arises in finding the root of ECT equations. EAM is a
semi-empirical method that is usually based on approximations to
nearest neighbors. It is basically governed by the ideas of density
functional theory and is capable of estimating the total energy of a
set of atoms in a system by summing the screened coulomb inter-
action and embedding energy [24]. Embedding energy is obtained
when each atom involved in coulomb interaction is inserted in the
electron density from all other atoms. The method premises on
the fact that the embedding energy is uniquely dependent on the
electron density and not on the source while electron density at
any site is usually assumed as a linear superposition of spherically
symmetric electron densities from other contributing atoms. Due
to inefficiency of EAM to generalize well, modification that takes
energy change (which arises as a result of non-spherical distribu-
tion of electron pi and deviation from the linear superposition of
atomic electronic density) into consideration evolved afterwards.

2.1. Proposed method

SVR is an extension of support vector machines which were
mainly developed to tackle classification problems. It employs sta-
tistical learning theory and structural risk minimization principle
[25–27]. The goal of support vector regression algorithm is to fit
a function (which is capable of being used in future to infer out-
put data point that are not previously employed by the function)
that approximates the inherited relation which exist between the
training dataset (yi, where i = 1, 2, 3, . . .,  n) and the target ti. The for-
mulation proposed by Vapnik [26] uses ε -insensitive loss function
as defined in Eq. (1) as a guide in generating a flat function g that
estimates the target in such a way that the incurred error between
the target and the output of the function does not exceed ε.

� (t, g (y)) =
{

0 if
∣∣ t − f (y)

∣∣ ≤ ε∣∣ t − f (y)
∣∣ − ε otherwise

}
(1)

A case of linear function g of a form presented in Eq. (2) is
described as a complex optimization problem in such a way  that
minimization of norms 1

2 ‖w‖2 is ensured purposely to have a flat
function.

f (y) = w · y + b (2)

w ∈ Y(input space), b ∈ R and w · y represents a dot product.
The convex optimization problem illustrated by Eq. (3) is subject

to the assumption entails in Eq. (4) which indicates the feasibility
of the function.

1
2

‖w‖2 (3)

Subject to{
ti − (w · y + b) ≤ ε

(w · y + b) − ti ≤ ε

}
(4)

Slack variables
(

� and �′)are often adopted so as to accommo-
date any constraint that can impede the feasibility of the function
g. The formulation is therefore stated as

1
2

‖w‖2 + C

n∑
i=1

(
�i + �′

i

)
(5)
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