Journal of Logical and Algebraic Methods in Programming 88 (2017) 154-173

Contents lists available at ScienceDirect

C
METHODS IN

Journal of Logical and Algebraic Methods in A
Programming ‘

www.elsevier.com/locate/jlamp

From imperative to rule-based graph programs @CmssMark

Detlef Plump

University of York, United Kingdom

ARTICLE INFO ABSTRACT
Artic{e history: We discuss the translation of a simple imperative programming language, high-level random
Received 23 January 2015 access machines, to the rule-based graph programming language GP 2. By proving the

Received in revised form 10 May 2016
Accepted 5 December 2016
Available online 13 January 2017

correctness of the translation and using GP 2 programs for encoding and decoding between
arbitrary graphs and so-called register graphs, we show that GP 2 is computationally
complete in a strong sense: every computable graph function can be directly computed
with a GP 2 program which transforms input graphs into output graphs. Moreover, by

Iée;;;\l;vl:rs;grams carefully restricting the form of rules and control constructs in translated programs,
GP 2 we identify simple graph programs as a computationally complete sublanguage of GP 2.
Rule-based programming Simple programs use unconditional rules and abandon, besides other features, the non-
Computational completeness deterministic choice of rules.

Random access machines © 2016 Elsevier Inc. All rights reserved.

Graph transformation

1. Introduction

The use of graphs to model dynamic structures is ubiquitous in computer science; prominent example areas include
compiler construction, pointer programming, natural language processing, and model-driven software development. The
behaviour of systems in such areas can be naturally captured by graph transformation rules specifying small state changes
which are typically of constant size. Domain-specific languages based on graph transformation rules include AGG [21],
GReAT [1], GROOVE [11], GrGen.Net [14] and PORGY [9]. This paper focuses on the graph programming language GP [18,19]
which aims to support formal reasoning on programs (see [20] for a Hoare-logic approach to verifying GP programs).

In this paper, we discuss the translation of a simple imperative programming language to GP 2. The motivation for this
is threefold:

1. To prove that GP 2 is computationally complete, in the strong sense that graph functions are computable if and only if
they can be directly computed with GP 2 programs which transform input graphs into output graphs.

2. To identify a computationally complete sublanguage of GP 2, by restricting the form of rules and control constructs in
the target code.

3. To demonstrate in principle that imperative languages based on registers and assignments can be smoothly translated
to a language based on graph transformation rules and pattern matching.

We use a prototypical imperative language called HIRAM, for high-level random access machines. The language differs from
standard random access machines [2,16] in that it provides while loops, if-then-else commands, and registers containing
integer lists. HIRAM programs are translated into equivalent GP 2 code working on edge-less graphs with register-like nodes.

E-mail address: detlef.plump@york.ac.uk.

http://dx.doi.org/10.1016/j.jlamp.2016.12.001
2352-2208/© 2016 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jlamp.2016.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:detlef.plump@york.ac.uk
http://dx.doi.org/10.1016/j.jlamp.2016.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2016.12.001&domain=pdf

D. Plump / Journal of Logical and Algebraic Methods in Programming 88 (2017) 154-173 155

bridge(a: atom; x,y: list; m,n: int; s: string)

e E N
. m . n m n
1 2 3 1 2 3
where (a =0 or a = “?”) and not edge(1, 3, m:n)

Fig. 1. Declaration of a conditional rule.

list (Z U Char™)*
Ul Ul
atom 7Z U Char™
2 2
int string Z Char*
Ul Ul
char Char

Fig. 2. Subtype hierarchy.

In addition, target programs contain subprograms for encoding graphs as register graphs and decoding register graphs into
normal graphs.

The rest of this paper is structured as follows. Section 2 briefly reviews the language GP 2. In Section 3, we introduce
HIRAM as our prototypical imperative language. The translation of HIRAM to GP 2 is presented in Section 4, along with a
correctness proof and the definition of simple graph programs. Section 5 gives GP 2 programs for encoding and decoding
graphs, and states the main result of the paper, viz. that simple graph programs are computationally complete in a strong
sense. Related work is discussed in Section 6. In Section 7, we consider future work and conclude. Appendix A defines GP 2
labels and rule conditions, Appendix B reviews the operational semantics of GP 2, and Appendix C shows the translation of
HIRAM assignments with repeated addresses (which is omitted in Section 4 for readability reasons).

2. The graph programming language GP 2

This section provides a brief introduction to GP 2, a domain-specific language for graphs. The syntax and semantics of GP
2 are defined in [19] (see also Appendix A and Appendix B). The language currently has two implementations, a compiler
generating C code [4] and an interpreter for exploring the language’s non-determinism [3].

GP 2 programs transform input graphs into output graphs, where graphs are labelled and directed and may contain
parallel edges and loops.

Definition 1 (Graph). Let £ be a set of labels. A graph over L is a system (V,E,s,t,I,m), where V and E are finite sets
of nodes (or vertices) and edges, s: E— V and t: E — V are source and target functions for edges, and [: V — £ and
m: E — L are labelling functions for nodes and edges.

The principal programming construct in GP 2 are conditional graph transformation rules labelled with expressions. For
example, Fig. 1 shows the declaration of the rule bridge which has six formal parameters of various types, a left-hand
graph and a right-hand graph which are specified graphically, and a textual condition starting with the keyword where.
The small numbers attached to nodes are identifiers, all other text in the graphs are labels.

The set of GP 2 labels is given by the syntactic category Label in the grammar of Fig. A.12. Labels consist of an expression
and an optional mark (explained below). Expressions are of type int, char, string, atom or 1ist, where atom is the
union of int and string, and 1ist is the type of a (possibly empty) list of atoms. Lists of length one are equated with
their entries and hence every expression can be considered as a list. The subtype hierarchy of GP 2 is shown in Fig. 2 (both
syntactically and semantically).

The concatenation of two lists x and y is written x:y,! the empty list is denoted by empty. Character strings are enclosed
in double quotes. Composite arithmetic expressions such as n*n must not occur in the left-hand graph, and all variables
occurring in the right-hand graph or the condition must also occur in the left-hand graph.

Besides carrying list expressions, nodes and edges can be marked. In Fig. 1, the outermost nodes are marked by a grey
shading and the dashed arrow between nodes 1 and 3 in the right-hand graph is a marked edge. Marks are convenient to

1 Not to be confused with Haskell's “:” which adds an element to the beginning of a list.



Download English Version:

https://daneshyari.com/en/article/4951413

Download Persian Version:

https://daneshyari.com/article/4951413

Daneshyari.com


https://daneshyari.com/en/article/4951413
https://daneshyari.com/article/4951413
https://daneshyari.com

