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Software components are a valuable programming abstraction that enables a compositional 
design of complex applications. In distributed systems, components can also be used to 
provide an abstraction of locations: each component is a unit of deployment that can 
be placed on a different machine. In this article, we consider this kind of distributed 
components that are additionally loosely coupled and communicate by asynchronous 
invocations.
Components also provide a convenient abstraction for verifying the correct behaviour of 
systems: they provide structuring entities easing the correctness verification. This article 
provides a formal background for the generation of behavioural semantics for asynchronous 
components. It expresses the semantics of hierarchical distributed components com-
municating asynchronously by requests, futures, and replies; this semantics is provided 
using the pNet intermediate language. This article both demonstrates the expressiveness 
of the pNet model and formally specifies the complete process of the generation of a 
behavioural model for a distributed component system. The purpose of our behavioural 
semantics is to allow for verification both by finite instantiation and model-checking, and 
by techniques for infinite systems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Ensuring the safety of distributed applications is a challenging task. Both the network and the underlying infrastructure 
are not reliable, and additionally, even without failures, applications are complicated to design because of the multiple 
execution paths possible. To ensure the safety of distributed applications, we propose to use formal methods to be able to 
verify the correct behaviour of distributed applications. Consequently, it is necessary to choose a programming abstraction 
that is convenient to write applications, but also that provides enough information to be able to check the properties of 
the program. We adopt a programming model that is expressive enough to program complex distributed applications but 
with some constraints enabling the behavioural verification of these applications. This programming model relies on the 
notion of distributed software components. Component models provide a structured programming paradigm, and ensure 
a very good re-usability of programs. Indeed in component applications, both required and provided functionalities are 
defined by means of provided/required ports; this improves the program specification and thus its re-usability. Several 
effective distributed component models have been specified, developed, and implemented in the last years [1–4] ensuring 
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different kinds of properties to their users. Component models have been chosen as the target programming model for 
many developments in formal methods. Indeed, additionally to the valuable software engineering methodology they ensure, 
components also provide structural information that facilitate the use of formal methods: the architecture of the application 
is defined statically.

Distributed component models. Even if our theorems and results can be adapted to most component models, we primarily 
focus on one distributed component model, the GCM (Grid Component Model [4]). This component model originates from 
the Grid computing community, it is particularly targeted at composing large-scale distributed applications. Its reference 
implementation GCM/ProActive relies on the notion of active objects, and ensures that, during execution, each thread is 
isolated in a single component. Because of active objects, components that usually structure the application composition also 
provide the structure of the application at runtime, in terms of location and thread (a single applicative thread manipulates 
the state of the component). We call this kind of components asynchronous components because they are loosely coupled 
entities communicating by a request–reply mechanism. All those aspects facilitate the use of formal methods for ensuring 
safe behaviour of applications, but they also require specific developments to produce a formal model of an application built 
from such components.

Contribution. This article formalises the construction of a behavioural model for the core constructs of GCM/ProActive com-
ponents. It describes formally how we can generate a behavioural model in terms of pNets (parameterised Networks of 
synchronised automata) [5] from the description of the architecture of a GCM/ProActive application and the description of 
the behaviour of each service method implemented by the programmer. pNets are networks of LTSs with parameters or-
ganised (and synchronised) in a hierarchical way. In this article we formalise the automatic construction of the behavioural 
model for communication, management, and composition aspects.

Our behavioural models are parameterised: pNets specify a structured composition of labelled transition systems (LTS) 
that can use parameters/variables. Each pNet is either formed of other pNets or is a single LTS. Parameters can be used as 
local variables in an LTS; but they can also be used to define families of pNets of variable size, and to specify synchronisation 
between pNets (see Section 4). Once the parameterised behavioural model is generated, we can for example generate a finite 
instance of the model that can be checked against correctness formulas using a model-checking tool. But our behavioural 
model is richer than what can be checked by finite-state model-checkers and other verification techniques can also be 
used. For example we are currently working on more symbolic techniques mixing bisimulation algorithms with satisfiability 
engines to deal with properties of pNet systems with unbounded data, or with unknown sub-nets [6].

The GCM model and its GCM/ProActive implementation provide a very rich environment for building distributed appli-
cations, including too many features to be fully formalised in this article. In section 2, we shall define formally a “Core GCM” 
model, containing its most important constructs, namely:

• Primitive components: at the leaves of the hierarchy, from the definition of the service methods, we specify a compo-
nent able to receive requests and serve each of them one after the other. When a request service terminates, a reply is 
sent back to the component that emitted the request. The crucial parts composing the model of a primitive component 
are: the request queue, the handling of asynchronous communications for sending requests and replies, the futures and 
their management (Section 4.1).

• Composite components (composites, for short): as our component model is hierarchical, a component can be built from 
the composition of other components. In GCM, composites are instantiated at runtime, it is thus necessary to specify 
their behaviour in our model too (see Section 4.2). Each composite is in fact implemented as an active object and thus 
the internal structure of a composite is very similar to the one of a primitive component.

• Component composition: from an ADL (architecture description language) specification, we generate the synchronisa-
tions corresponding to the communications that can occur between the different components.

• Futures: futures are frequently used in active object languages, they are place-holders for results of asynchronous invo-
cations, called requests here. We encode in our models the mechanisms for dealing with futures (Section 4.1.5) and the 
transmission of futures references between components (first class futures, Section 5).

Previous works. This article is built upon previous works of the authors. The pNets have already been defined formally in [5], 
but in a more complex version using a specific form of controllers named “transducers”. In this article, in Section 3, we 
shall provide a new definition, simpler and more concise.

The modelling of basic component features has been addressed in previous publications, including: 1) the pNets-based 
semantics of primitive and composite components, and their hierarchical composition have been described in [7] and [5]; 
2) behavioural models for first-class futures have been studied in [8].

In these works, we built pNet models for specific features of GCM in the context of specific case-studies and proved 
properties of the studied applications. To illustrate the kind of properties we are able to verify, we proved by model-checking 
that a master–slave fault-tolerant application [9] behaves correctly: 1) it answers to requests: we proved both reachability 
and (fair) inevitability of termination of services, 2) the answers (values returned by services) are correct. This shows that 
our approach addresses both safety and liveness properties, but also functional correctness, modulo data abstraction, based 
on user requirements.

In Sections 4 and 5 we provide a general formalisation of the features previously studied in those examples.
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