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a  b  s  t r  a  c  t

Support  vector  machine  (SVM)  is  sensitive  to the outliers,  which  reduces  its  generalization  ability.  This
paper  presents  a novel  support  vector  regression  (SVR)  together  with  fuzzification  theory,  inconsistency
matrix  and neighbors  match  operator  to  address  this  critical  issue.  Fuzzification  method  is exploited
to  assign  similarities  on  the  input  space and  on  the  output  response  to each  pair  of  training  samples
respectively.  The  inconsistency  matrix  is used  to  calculate  the  weights  of  input  variables,  followed  by
searching  outliers  through  a novel  neighborhood  matching  algorithm  and  then  eliminating  them.  Finally,
the  processed  data  is  sent  to the  original  SVR,  and the  prediction  results  are  acquired.  A simulation
example  and  three  real-world  applications  demonstrate  the proposed  method  for  data  set  with  outliers.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The support vector machine (SVM) initially proposed by Cortes
and Vapnik [1,2] is drawing close attention due to its high gen-
eralization in solving practical problems such as nonlinearity,
small samples and over-fitting. The SVM is a learning machine
based on the structural risk minimization (SRM) inductive principle
to achieve the generalized performance. Unlike some traditional
approaches which attempt to minimize the empirical risk, the
SVM also considers the minimization of Vapnik–Chervonenkis (VC)
dimension. The main idea of the SVM is to compute a linear regres-
sion function in a higher dimensional feature space mapped from
the original input space. This function is established with a portion
of the training data, which are called support vectors. The SVM has
been successfully applied to various fields – classification [3,4], time
prediction [5–7] and regression [8,9].

The SVM falls into two categories, one is the support vector clas-
sification (SVC) and the other is the support vector regression (SVR).
When the SVM is exploited in the process of time prediction or
regression estimation, the approaches are defined as the SVR. The
model generated by the SVR only depends on the support vectors,
not all of the training samples. An early overview of the fundamen-
tal ideas underlying the SVR has been given by Smola and Schölkopf
[8], which also includes some popular algorithms for training the
SVM, as well as some modifications and extensions.
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The approximation scheme using the SVR depends only on the
support vectors, rather than all the training samples. It is an impor-
tant advantage, while simultaneously it makes the SVR too sensitive
to outliers and increases the risk of over-fitting [10]. If the collected
data set contains outliers, the learning process may  not recognize
such a situation and then try to fit those abnormal data, thus result-
ing in an erroneous approximation function [6,11].

Generally for real-world applications, data sets often contain
multiple variables as well as noise or outliers that are inconsistent
with the other data. Outliers may  occur for a variety of reasons, such
as environment changes or erroneous measurements. Developing
methods for reducing the influence of outliers in the SVM have
attracted considerable researchers to study on it. Lin and Wang
[12] proposed the fuzzy SVM by assigning different fuzzy member-
ships to different training samples. Jin et al. [13] transformed the
given data into a higher feature space through a fuzzy system, and
exploited genetic algorithms to improve the fuzzy feature trans-
formation. However, it is difficult to define the membership to the
training samples especially when there is not any prior knowledge.
Williams [14] proposed a new version called scaled SVM based on
the extreme value theory and by computing the mean and variance
of the generalization errors for reducing generalization error. Li [15]
introduced an idea of separating outliers through the K-nearest
neighbor algorithm to guarantee high generalization. Zhan and
Shen [16] proposed a new training method for the SVM, in which
an adaptive penalty term in the objective function is designed to
suppress the influences of outliers, while the method is relatively
complicated. Zhang and Wang [17] proposed a rough margin based
SVM based on the rough set theory, in which more training samples
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can be adaptively considered with different penalty depending on
their positions.

Nevertheless, each of the above approaches was proposed
mainly for improving the efficiency and generalization of the SVC,
rather than the SVR. To our knowledge, there have not yet been
quantities of researches in reducing the influence of outliers for
SVM regression. Chuang et al. [18] proposed a robust SVR network,
in which the traditional robust statistics is exploited to improve
the acquired regression model, while this method needs extensive
computation and additional parameters. Suykens et al. [11] pro-
posed a weighted least squares SVM (LS-SVM) to reduce the effects
of outliers, while the final result was seriously influenced by the
selection of the extra parameters.

In terms of outlier detection, several of the most popular
techniques are distance-based approach [19], distribution-based
approach [20], depth-based approach [21]. However, it is well
known that these algorithms are subjected to the dimension curse,
and some of them also require the weights of multiple variables. In
addition to these approaches above, there are also density-based
approach [22] and rough set theory-based approach [23], but the
former is sensitive to the parameters defining the neighborhood,
and the latter applies to discrete data rather continuous data. More-
over, SVR is used for outlier detection with nonlinear functions and
multidimensional input [24], but it is difficult to apply because of
adjusting parameters and high computational cost.

Drove by the above analysis, a novel support vector regres-
sion method for data set with outliers is devised in this paper. In
this approach, fuzzy similarity is introduced to define the similari-
ties between each pair of two training samples. The inconsistency
matrix is exploited to compute the weights of the input variables.
A new neighborhood matching algorithm is used to judge whether
the training samples are outliers. Then these outliers are eliminated
and the data set without outliers is sent to the SVR.

The remainder of this paper is arranged as follows: Section 2
reviews a general background of the SVM and its limitations when
outliers exist, and the basic theory of fuzzy rough set theory. The
proposed SVR for data set with outliers is presented in Section 3,
as well as the introduction of several key steps of the proposed
method, including fuzzy similarity (FS) calculation, weight calcula-
tion, neighborhood matching degree calculation and modeling for
the SVR. A simulation example and three real-world applications
are used to illustrate the validity of the method in Sections 4 and 5
respectively. Conclusion follows in Section 6.

2. Methodological background

2.1. SVM for regression

A regression problem can be defined as to determine a function
for approximating the output from a set of training data X = {(x1,
y1), (x2, y2), . . . (xl, yl)}, where xi ∈ Rl (l is the number of the training
samples) denotes the input space, and yi ∈ R denotes its correspond-
ing output value for i = 1, 2, . . .,  l. As mentioned above, the SVR is to
approximate the given observations by a linear function and a non-
linear transformation from Rl to a high-dimensional feature space
F. The general function for SVR takes the form as follows:

f (x) = (w · ϕ(x)) + b (1)

where w ∈ Rl denotes a weight vector, b ∈ R denotes a threshold, and
ϕ(·) is the nonlinear transformation from Rl to the feature space F.
Based on the SVR theory, the value of w and b should be determined
by minimizing the structural risk:

RSR(f ) = 1
2

||w2|| + C

l∑
i=1

Lε(y) (2)

where ||w||2 indicates the complexity of the regression function,
which should be minimized in the approximation process, and w
can be written by the form of Eq. (3) with Lagrange multiplier ˛i
and ˛∗

i
; C > 0 is a regular constant determining the penalties to the

empirical errors, a large value of which tends to minimize the error
in the regression process and get lower generalization, while a small
value of which allows the error but tends to get higher generaliza-
tion; Lε(y) denotes the loss function determined by the insensitive
parameter ε and the error between the real output value y and the
estimated one f(x) as Eq. (4).

w =
l∑

i=1

(˛i − ˛∗
i )ϕ(xi) (3)

Lε (y) =
{

0,
∣∣f (x) − y

∣∣ < ε∣∣f (x) − y
∣∣ − ε, otherwise

(4)

The general function can be rewritten by substituting Eq. (3) into
Eq. (4) as follows:

f (x) =
l∑

i=1

(˛i − ˛∗
i )(ϕ(xi) · ϕ(x)) + b =

l∑
i=1

(˛i − ˛∗
i )k(xi, x) + b (5)

where the (ϕ(xi) · ϕ(x)) can be replaced with kernel function k(xi, x),
which maps the input space into a higher dimensional feature space
and reflects the prior knowledge on data. The details of several main
kernel functions can be referred to Ref. [25], and the selection of
them should be undertaken by the user.

The dual problem corresponding to the original optimization
problem is to maximize

l∑
i=1

yi(˛
∗
i − ε)−ε

l∑
i=1

(˛i + ˛∗
i ) − 1

2

l∑
i,j=1

(˛∗
i −˛i)(˛

∗
j − ˛j)k(xi, xj) (6)

which subjects to

l∑
i=1

(˛∗
i − ˛i) = 0 (7)

˛i, ˛∗
i ∈ [0, C] , i = 1, 2, . . .l

As mentioned above, only a portion of training samples are sup-
port vectors, which have the nonzero values of the corresponding
Lagrange multipliers in Eq. (5). If the requirement

∣∣f (x) − y
∣∣ < ε

is met, the corresponding training samples will not contribute to
the regression as their Lagrange multipliers equaling to zero; while∣∣f (x) − y

∣∣ ≥ ε, the corresponding training samples may  become
support vectors with their nonzero Lagrange multipliers.

After the value of w is determined in Eq. (3), the variable b can be
computed according to the Karush–Kuhn–Tucker (KKT) condition
as follows:

b = yi − (w · xi) − ε if ˛i ∈ [0,  C]

or b = yi − (w · xi) − ε if ˛∗
i

∈ [0,  C]
(8)

Then the construction of the SVR has been completed.
It can be seen that if over-fitting phenomena occurs, some

inaccurate information like outlier may  also be modeled into the
regression function, thus making the function unsmooth. During
the regression process, SVR tends to minimize the empirical error
to some extent, which in turn, lowers the generalization of the
acquired regression function. Therefore, these outliers should be
removed before the implementation of the SVR.
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