
JID:JLAMP AID:78 /FLA [m3G; v1.161; Prn:19/10/2015; 11:08] P.1 (1-14)

Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

The evolution of VDM tools from the 1990s to 2015 and the 

influence of CAMILA

Peter Gorm Larsen a,∗, John Fitzgerald b

a Department of Engineering, Aarhus University, Denmark
b School of Computing Science, Newcastle University, Newcastle upon Tyne, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 July 2015
Received in revised form 4 October 2015
Accepted 5 October 2015
Available online xxxx

Keywords:
VDM
CAMILA
Tool support
History
Industrial applications

The Vienna Development Method (VDM) is one of the most mature formal methods, with 
a history of cost-effective industrial deployment. One important route for this has been the 
development of robust tools supporting the construction of models, and their animation. 
We trace the history of this strand of work from the mid-1990s to 2015, taking as our 
starting point challenges for the industrial usage of formal methods set out by José Nuno 
Oliveira in 1997. We describe five generations of VDM tools: the IFAD VDM Toolbox, 
VDMTools, Overture, Crescendo and Symphony, emphasising the influence that the goal 
of industry usage has had on their features and architectures. We chart the move from a 
single-formalism tool focused on executable VDM specifications to a platform for multi-
tool analysis of a wider range of models, and look forward to the growth of integrated 
multidisciplinary toolchains from the ongoing INTO-CPS project. We briefly compare the 
VDM tool story with the approaches taken by other formalisms that have been applied in 
industry.

© 2015 Published by Elsevier Inc.

1. Introduction

Decades of persistent research on applicable formal methods, often in the face of scepticism, are bearing fruit, and there 
are now many notable successes to report [1,2]. These are in large part due to the research and practitioner community 
better tuning formalisms to industrial needs, and developing the robust tools that are a sine qua non for effective application. 
It was not always clear that the goal of stronger tooling would be pursued, but the vision and contribution of scientists such 
as José Nuno Oliveira have been fundamental to achieving the positive state of formal methods today.

The Vienna Development Method (VDM) originated in the pioneering work of IBM’s Vienna Laboratory on the challenges 
of defining programming language semantics and of designing trustworthy compilers. In his 1999 review of the scientific 
history of VDM, Jones remarked that “In spite of a number of efforts, projects to provide tool support have never been easy 
to justify” [3]. In the years since, the VDM community has set itself the goal of creating a formal method that is supported 
well by tools that deliver the capabilities needed for industry deployment. A measure of its success is to be found in 
significant applications like that of the FeliCa chip firmware, deployed in more than 259 million mobile telephones [4] using 
VDMTools [5].

We would argue that three principles have tacitly guided VDM tools work in the last 25 years. First, priorities for tooling 
have gone hand-in-hand with the needs of targeted industry application, leading to an emphasis on model construction 

* Corresponding author.
E-mail addresses: pgl@eng.au.dk (P.G. Larsen), john.fitzgerald@newcastle.ac.uk (J. Fitzgerald).

http://dx.doi.org/10.1016/j.jlamp.2015.10.001
2352-2208/© 2015 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jlamp.2015.10.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:pgl@eng.au.dk
mailto:john.fitzgerald@newcastle.ac.uk
http://dx.doi.org/10.1016/j.jlamp.2015.10.001


JID:JLAMP AID:78 /FLA [m3G; v1.161; Prn:19/10/2015; 11:08] P.2 (1-14)

2 P.G. Larsen, J. Fitzgerald / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

and simulation. Second, tools robustness is as important as capability, with the consequence that a release discipline has 
been developed even for what is sometimes unfunded tool development. Third, tools should be integrated with, rather than 
supplant, established workflows; it is consequently necessary to understand workflows before deployment of tools.

This paper reviews the recent history of tools development for VDM, with its focus on support for model construction 
and analysis through simulation and industrial usage. In Section 2 we first elaborate concerns on the industrial take-up for 
formal methods, as articulated by Oliveira in 1997. These provided significant motivation for both the CAMILA framework 
and the emerging IFAD VDMTools (Section 3). We describe the influence of this work on the development first of VDM-
Tools (Section 4) and then its open-source cousin Overture (Section 5), and discuss how that framework is being extended 
today to provide formal model-based tools for the design and analysis of increasingly demanding classes of product, notably 
Systems of Systems and Cyber-Physical Systems (Section 6). Finally, we briefly relate the VDM tool development to other 
formal methods (Section 7), discuss the extent to which we have succeeded or failed to meet Oliveira’s challenges, and look 
to future directions (Section 8). Throughout, we aim to provide an extensive bibliography, particularly relating to the history 
of VDM’s tool support.

2. Enabling industrial use of formal methods

In May 1997, Oliveira gave a presentation at the United Nations University International Institute for Software Technol-
ogy [6], in which he listed his main concerns for industrial usage of formal methods as follows:

Simplicity: Industry will never absorb formal methods based on complex mathematical theories.
Compatibility: Formal methods cannot replace traditional methods altogether.
Tools: Formal methods should be supported by tools and environments.
Flexibility: Formal method tools should be easily portable across different machine platforms and be able to communicate 

with existing (traditional) tools.
Modularity: Common sense should be applied to software development; warning: informal modularity is worse than for-

mal monolithic development.
Reusability: Requires a formal classification scheme; otherwise, repositories become full of things we will never find.
Back to “good engineering habits”: In school physics we are taught a universal strategy for problem solving: understand 

the problem, build a mathematical model of your understanding of it, reason in this model, upgrade your model, 
if necessary, and calculate a solution. Why don’t we do likewise in software development?

The authors of this paper were making similar observations to Oliveira at around the same time [7]. We were motivated 
by the experience of applying VDM at British Aerospace (Systems and Equipment), in an early comparative study of software 
development with and without formal models [8]. Our strongest focus was perhaps on Oliveira’s compatibility and tools
issues. With others we advocated a pragmatic “lightweight” approach to formal methods in which methods would remain 
fully formal but would be applied to subsystems and system features that merited the investment [9,10].1 We also observed 
that industrial users rarely develop systems from scratch; instead they often build on existing solutions or use existing 
components from other projects. Thus, there is a clear need to lower the barriers to the use of formal techniques where 
legacy features exist.

Finding an appropriate balance between the effort spent on producing formal models and the value they bring either in 
the form of new insight or in the form of a product is paramount to the industrial application of formal methods [11]. In or-
der to gain value from formal models it is important to supply efficient tool support that enables users rapidly to understand 
models, identify weaknesses and explore alternatives, and here the notion of executable models becomes important.2

A model-based formal method such as VDM has many features that appear familiar to software engineers with expe-
rience of imperative and functional programming. In working with engineers in industry we rarely found difficulties in 
understanding the elements of VDM as a modelling language; the most challenging skill to teach is the crucial one of ab-
straction [15]. Abstraction decisions should be governed by the purpose of the model [16], but models must remain rich 
enough to be competent in the sense that engineers should have confidence that the outcomes of model-based analysis will 
reflect the properties of the realisation. A focus on abstraction skills in formal methods education is both essential and, we 
argue is enhanced by the use of tools [17].

3. CAMILA/SETS and IFAD VDM-SL Toolbox developed in parallel

The CAMILA initiative at the University of Minho, led by Oliveira (the original project for its development was from 1990 
to 1993) [18–21] developed a formal modelling notation inspired by functional programming and set theory. The focus here 

1 Bernhard Steffen once remarked to Fitzgerald that, although our approach might be called “lightweight”, the specific gravity of VDM remained the same 
– in fact we had provided the machinery for lifting it!

2 Many model-based formal methods now define executable subsets, but the value of executability was debated because of the risk of compromising 
abstraction [12–14].



Download English Version:

https://daneshyari.com/en/article/4951440

Download Persian Version:

https://daneshyari.com/article/4951440

Daneshyari.com

https://daneshyari.com/en/article/4951440
https://daneshyari.com/article/4951440
https://daneshyari.com

